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Introduction 
Recall the early 1980s and the prevailing vision of the 
computer as an educational tool. Most applications 
aimed to teach procedural knowledge as narrowly 
defined by formulas and basic skills-for instance, how 
to multiply or divide with greater efficiency. Computer­
aided instruction (CAl) was commonplace and typically 
sought ways to replace or augment the teacher in 
teaching basic skills. Soon the vision shifted towards 
using computers to teach conceptual knowledge. 
Computers could immerse students in scenarios to help 
them construct concepts in contexts simulating real life 
and offered inquiry-oriented activities, manipulable 
diagrams, and models. This shift towards conceptual 
knowledge radically expanded the variety of 
educational applications for computer technology. 

In this article, I argue that a similar expansion of our 
vision for educational technology is on the horizon. We 
are beginning to harness the power of educational 
technology to teach structural knowledge-the very 
ways that knowledge is structured. In the paragraphs to 
follow, I review the earlier shift from procedural to 
conceptual knowledge. Then I explain what structural 
knowledge is, how it has been defined in the extant 
literature (e.g., Jonassen, Beissner, & Yacci, 1993; 
Rohrer-Murphy, 2000), and how the usage here builds 
upon and slightly departs from those definitions. Next, I 
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explore the importance of structural knowledge for 
developing deep understanding through examples from 
our research on causality and science learning, and 
offer an illustrative example of how technology can 
help teach structural knowledge. Presently, structural 
knowledge is seldom addressed in school. The 
possibility of teaching structural knowledge in 
accessible and engaging ways holds profound 
implications for how educators and students will 
conceptualize the nature of learning and for what it 
means to engender deep understanding. 

An Early Focus on 
Procedural Knowledge 

It makes sense that early computer applications 
focused on procedural knowledge. Traditionally, 
procedural knowledge referred to skills including 
understanding of symbols (such as the numerals 1, 2, 
3 ... ) and signs (such as +, -, x, +) as well as rules and 
algorithms for how to use the signs and symbols 
(Hiebert & Lefevre, 1986). Defined within these 
parameters, it is perhaps the most straightforward of the 
three knowledge types, and the computer held some 
obvious advantages for teaching it. The computer 
education literature of the time elaborated the benefits 
of using computers for teaching procedural knowledge. 
Computers provided immediate feedback, offered 
various types of reinforcement and simple strategies, 
and could even be programmed to track student 
progress. For instance, computers taught reading 
through drills followed by multiple-choice questions 
where students worked at their own level and progress 
was stored (Wells & Bell, 1980). According to Menis, 
Snyder, and Ben-Kohav (1980) computerized algebra 
drills made abstract concepts more concrete, offered 
encouragement through immediate feedback, 
prevented embarrassment by enabling privacy in 
learning, allowed students to work at their own pace, 
and gave individualized homework assignments. As 
these programs became more sophisticated, some 
sought to include various types of personalized 
tutoring. -

There were notable exceptions to CAl packages, of 
course, such as Seymour Papert's LOGO (Papert, 
1980), where the student programmed the computer 
with a simple programming language. According to De 
Laurentis (1980), while CAl was the most common use 
of computers in education, it was not necessarily the 
best. CAl took the control for learning away from 
students, whereas programs such as LOGO put students 
in control. Through the interactive programming in 
LOGO, students developed math and reasoning skills 
through problem-solving and application. 

Procedural knowledge, in recent instantiations, has 
been more broadly and richly construed to include 
"science process skills" (e.g., Dunbar & ,Klahr, 1989; 
Kuhn, Amsel, & O'Loughlin, 1988), or the "epistemic 
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rules" within a particular discipline (e.g., Collins & 
Ferguson, 1993; Morrison & Collins, 1995; Perkins & 
Simmons, 1988), for instance, knowledge about how to 
operationalize a question, how to isolate and control 
variables, and so forth. This richly construed type of 
procedural knowledge is at the heart of inquiry and 
developing deep understanding. However, the early 
computer applications focused on the more narrow 
construal. 

An Expanded Focus on 
Conceptual Knowledge 

It was not long before educators began to look 
beyond procedural knowledge as an educational 
objective and to seek ways to use the power of the 
computer to also teach conceptual knowledge. It is 
important to first clarify some terms. Here I intend 
conceptual knowledge to encompass declarative 
knowledge (knowing what) but to also encompass the 
connections between bits of information such that it 
results in a cohesive and meaningful mental model of 
what happens in relation to a given phenomenon, and 
why. Others have referred to the connections as 
structural knowledge (e.g., Diekhoff, 1983; Jonassen 
eta/., 1993) and so have argued that conceptual 
knowledge encompasses structural knowledge. I also 
argue that structural knowledge is an inherent (and yet 
distinct) part of conceptual knowledge. As such it can 
limit or enable the development of deep conceptual 
knowledge. However, as elaborated below, structural 
knowledge as defined here refers only to instances of 
very basic structuring of knowledge. 

Articles on computers in education appearing 
between 1980 and 1990 reveal this shift in focus from 
procedural to conceptual knowledge. Simic wrote, "No 
longer are computers seen as tutors or drillers. Instead, 
educators now are realizing that the computer is a tool 
for handling information" (1994, p. 2). Programs 
designed to help students learn particular concepts, 
such as frog dissection in Operation Frog (Goldhammer 
& Isenberg, 1984) or about ecosystems and whales in 
The Voyage of the Mimi (Bank Street College of 
Education, 1985), grew common. Some programs 
engaged students in inquiry-oriented quests to gain 
understanding of a particular phenomenon. Real-world 
problems could be easily transported to the classroom 
(Bransford, Brown, & Cocking, 1999) lending greater 
autfienticity to school learning. In some cases (as in The 
Voyage of the Mimt), video and computer technology 
combined to present real-world problems. Students 
could discover knowledge through application, and 
feedback was given within a meaningful context 
(Keegan, 1993). Some simulations replaced real-world 
experience like lab experiments, as in Operation Frog, 
but were preferable to reading experiments in texts 
(Mace, 1984). 

Some of the best of these conceptually focused 
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programs, such as The Voyage of the Mimi, also 
engaged students in the epistemology of the discipline, 
thus encompassing the richer construal of procedural 
knowledge. For example, students collected and 
analyzed data along with the scientists. They were 
given the opportunity to examine data patterns, isolate 
and control for variables, and deal with ambiguity-all 
forms of thinking that are part of scientific inquiry. 

Programs focused on conceptual knowledge and the 
more richly-construed version of procedural knowledge 
have continued to evolve into increasingly powerful 
educational tools. A number of these programs help 
students achieve understanding of concepts that are 
difficult to visualize either due to their abstractness or 
to dynamic processes that involve a heavy cognitive 
load. For instance, Stark Design Molecular Dynamics 
(Stark Design, 1999) simulates atoms in motion, and 
GenScope (Concord Consortium, 1997) enables 
students to visualize and manipulate processes of 
inheritance. Students can move between different levels 
(DNA, Chromosome, Cell, Organism, Pedigree, and 
Population) to design and examine the effects of 
different manipulations. Various processes are 
animated, for instance, the process of meiosis at the 
cell level. ThinkerTools allows students to perform 
experiments to explore Newtonian models of force and 
motion (e.g., White & Horwitz, 1987). It uses dots as 
stripped down analogs (Perkins & Unger, 1994) that 
simulate the physics principles minus situational 
variables. Archimedes and Beyond (Snir, Raz, Smith, 
Grosslight, & Unger, 1994) enables students to 
experiment with concepts of mass, volume, and 
density. Students use "dots per box" models to explore 
what leads to sinking, floating, or suspending. 

Recent programs have sought to apply research on 
cognition, for instance, the literature on scientific 
misconceptions or alternative conceptions (e.g., Driver, 
Guesne, & Tiberghien, 1985). Developers have teased 
apart concepts that students have great difficulty with 
and provided ways for them to grapple with the 
inherent difficulties. For instance, researchers (Lewis, 
Stern, & Linn, 1993; Wiser & Kipman, 1988) have 
helped students gain a better understanding of 
thermodynamics through computer simulations that 
make thermal processes more apparent. Students could 
manipulate variables to observe the results. Other 
applications have used the diagnostic power of the 
computer to encourage and track the growth of 
students' conceptual knowledge. For instance, the 
DIAGNOSER Program (Levidow, Hunt, & McKee, 
1991) is a HyperCard tool with physics questions 
written by researcher and educator Jim Minstrell, that 
allows teachers to track students' understanding around 
difficult science concepts. It enables intelligent tutoring 
and tracking of student progress. 

Additional advances include networked. 
opportunities to share ideas with other students, 
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paralleling a shift from Piagetian notions of learning 
(with a greater emphasis on an individual's 
construction of knowledge) to Vygotskyian notions of 
the nature of lear'ning (with a greater emphasis on the 
social construction of knowledge). Examples include 
Project GLOBE (Lawless & Coppola, 1996), CoVIS (Pea, 
1993), and CSILE (Scardamalia et a/., 1989; 
Scardamalia, Bereiter, & Lamon, 1994). Project GLOBE 
(Global Learning and Observations to Ben~fit the 
Environment) involved thousands of K-12 students 
across the world in gathering and sharing data on their 
local environment (Lawless & Coppola, 1996). CoVis 
(Learning through Collaborative Visualization) gave 
students access to scientific visualization software to 
study atmospheric and environmental sciences and 
encouraged collaboration between students in 40 
different schools. CSILE (Computer Supported 
Intentional Learning Environments) involves students in 
creating networked databases and generating 
knowledge through interacting with the data and other 
students around the data. 

Advances such as those outlined above show 
incredible promise for teaching conceptual knowledge 
and epistemic forms of procedural knowledge. While 
acknowledging the importance of procedural and 
conceptual knowledge, below I argue that a third type 
of knowledge is also needed-that of structural 
knowledge-and that technology offers special 
affordances for teaching it. 

A Currently Expanding Vision to 
Include Structural Knowledge 

The shift in focus from procedural to conceptual 
knowledge was profound in terms of how we use 
computers in education. This is not to imply that one 
focus completely replaced the other. Computers still 
hold great leverage for teaching procedural knowledge. 
However, our view of how computers should be used 
for educational purposes expanded considerably. In the 
paragraphs to follow, I elaborate the argument that 
another such expansive shift may be on the horizon, 
that of teaching structural knowledge in addition to 
procedural and conceptual knowledge. This shift 
parallels changes in how cognitive scientists and 
educators conceptualize the nature of learning and 
frame what education entails. As before, one focus 
certainly won't replace the other; rather, they may 
mutually enhance one another and at some point, we 
may see programs that attempt all three in integrated 
contexts. 

Structural knowledge has been defined in a couple 
of different ways. According to Jonassen and colleagues 
(1993), it is the knowledge of how concepts within a 
domain are interrelated. They view it as mediating 
between procedural and declarative knowledge and 
offer the following example. "The dictum 'warm air 
rises' entails connections between air and its modifier, 
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warm as opposed to cold. That warm air rises is 
predicated on a causal relationship between warm and 
rising, the basis of the principle of convection" (p. 4). 
Structural knowledge, then, is the understanding of 
these relationships and enables people to know more 
than what or how, but also why. Others (e.g., Preece, 
1976; Rohrer-Murphy, 2000; Shavelson, 1972, and as 
reviewed by Jonassen et a/., 1993) define structural 
knowledge as cognitive structure or the way that 
concepts are organized in long-term memory. Still 
others have used it to refer to individuals' knowledge 
structures (e.g., Champagne, Klopfer, Dese~a, & 
Squires, 1981 ). 

Structural knowledge, as defined here, fits with the 
spirit of the earlier definitions; however it is a bit more 
restrictive-a subset of the cases defined by Jonassen 
and colleagues (1993). While I do intend for it to refer 
to interconnections between concepts, I reserve it to 
refer to connections at the level of very fundamental 
structuring. So rather than connections at the level of 
specific principles, such as convection, it refers here to 
connections at a more basic level for how we make 
sense of experience; for instance, the way that one 
categorizes, or how one attributes causality, or 
characterizes the nature of numerosity. In this way, it 
does refer to cognitive structures. Novices and experts 
frame causal forms, define what it means to categorize, 
and think about the nature of number in ways that 
impact what they perceive as causal, or related, or 
countable, for examples. 

Presumably, there are structures in the world that 
impact the knowledge we must gain in order to create 
models with the greatest explanatory power. The 
pedagogical challenge of helping students develop 
structural knowledge involves enabling them to reflect 
upon and revise their current ways of structuring 
experience to more closely align with the ways that 
experts in a domain structure experience or 
information. For instance, an elementary student might 
use domino-like patterns to explain events in 
ecosystems (e.g., Gratzer, 1993), while an expert might 
also include re-entrant patterns and oscillations, among 
others. So teaching structural knowledge involves 
helping novices learn how experts structure, at a 
fundamental level, the phenomenon in question. 

Cognitive scientists have studied and illuminated 
some of the ways in which we structure our 
experience. For instance, Ellen Markman has mapped 
processes of categorization (1989), Rachel Gelman and 
colleagues (e.g., Bullock, Gelman, & Baillargeon,1982) 
have contributed to our understanding of how we 
structure basic causal events, and Dehaene (1997) and 
others have studied how our minds create numerosity. 
Evidence suggests that we have certain default patterns 
for how we structure experience. For instance, 
according to Bullock et a/. (1982), we use the 
principles of determinism, temporal priority, and 
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contiguity to determine whether events are causal and 
ultimately to define what we view as causally linked. 
Similarly, we expect a correlated structure of categories 
based upon natural kinds; for instance, we expect 
feathers to go with wings (Markman, 1989; Rosch 
eta/., 1976). 

Without the necessary expert structural knowledge 
(which may depart from our typical defaults) and a 
reflective sense of where it applies, students risk 
imposing limiting structures on new information. This 
results in distorting understandings to fit a typically less 
complex structure (e.g., Gratzer & Sudbury, 2000; 
Slotta & Chi, 1999; Wilensky & Resnick, 1999). We 
have seen this in science learning. Students often 
impose simple linear causal structures as opposed to 
the more complex ones that scientists use to frame their 
explanations (e.g., Driver, Guesne, & Tiberghien, 1985; 
Gratzer & Bell, 1999; Perkins & Gratzer, 2000). So, for 
example, when learning about simple circuits, students 
typically create models where the "electricity goes 
through the wire to the bulb" in a consumer-source 
model (Gratzer & Sudbury, 2000; Shipstone, 1985). 

Students need opportunities to learn structural 
knowledge as they are learning procedural and 
conceptual knowledge to minimize the likelihood that 
they will impose limits that stem from novice patterns 
of thought and to encourage the development of 
structures that fit with expert understanding. They also 
need to develop a reflective stance on how they 
structure understanding so that they actively consider 
and revise the structures that they engage (Gratzer & 
Beii-Basca, 2001; Zohar, in press). 

When first reading Ellen Markman's (1989) work on 
categorization, I found it illuminating to consider the 
problem space of how we create categorical structures. 
I was struck by how those structures need to constantly 
evolve as the parameters of that which we are 
categorizing shifts and so do the sensible parsings. The 
unfinished nature of my filing cabinet suddenly became 
a necessarily evolving process rather than a failing of 
sorts. Of course, one's filing cabinet is a rather concrete 
instantiation of how one structures experience. 
Typically, the ways in which we structure experience 
are not so apparent either to ourselves or others. It is 
this invisibility of such a fundamental part of the 
learning process that makes it so important that we seek 
to understand the structures students impose upon their 
learning and to help them explicitly reflect upon and 
revise. these structures. Indeed, we often don't 
recognize how we are structuring knowledge until it in 
some way is revealed through outcomes that are 
discrepant with our expectations. For example, 
imposing an additive structure as opposed to a 
multiplicative one when calculating exponential 
increases can result in startlingly larger outcomes than 
expected. Similarly, using class inclusion to systematize 
categories can lead to puzzles if one assumes 
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categories to be mutually exclusive; thus for young 
children it is difficult to see how a doll can be both a 
doll and a toy (Markman, 1989). 

Teaching Structural Knowledge Enables 
Deeper Understanding: An Example from 

Our Research on Causality 
Teaching students to reason about the structure of 

knowledge while they are learning conceptual 
knowledge improves their ability to achieve deep 
understanding (e.g., Gratzer & Perkins, 2000). In the 
following paragraphs, I briefly review work that my 
colleagues and I have carried out on how students 
structure the nature of cause and effect and its impact 
on their subsequent understanding of certain science 
topics as an example of how teaching structural 
knowledge can impact conceptual knowledge. 

A growing body of research suggests that students 
hold limited notions about the nature of cause and 
effect (e.g., Chi, 2000; Driver eta/., 1985; Perkins & 
Gratzer, 2000; Wilensky & Resnick, 1999). Here are 
some examples of how students from elementary 
through high school tend to structure causality (as 
reviewed in Gratzer & Bell, 1999). Students expect 
obvious causes and obvious effects, missing effects that 
involve systems in equilibrium or those that involve 
"passive" agents such as seatbelts. They detect local 
causes and local effects but fail to recognize action at a 
spatial or temporal distance (Spelke, Phillips, & 
Woodward, 1996). They assume simple linear, 
sequential causal patterns with temporal priority 
between causes and effects (Bullock eta/., 1982) but 
miss instances where an outcome is due to a 
relationship, such as in pressure (Beii-Basca & Gratzer, 
2001) or density differentials or where there is no clear 
temporal priority as in a simple circuit in steady state 
(Gratzer & Sudbury, 2000). They focus on the current 
situation rather than on processes or patterns of effects 
(Dorner, 1989). They expect absolute correspondence 
between causes and effects as an indication that a 
causal relationship exists (Siegler & Liebert, 197 4) and 
miss instances where the relationship is less reliable as 
in lightning strikes or germ transmission (Kalish, 1997). 

As part of The Understandings of Consequence 
Project, we have sought to identify how these patterns 
for structuring knowledge impact students' science 
learning and how interventions designed to modify 
students' structural knowledge about causality affect 
their learning. I report briefly on those efforts here. Our 
work with students in a range of grades (third, fourth, 
eighth, tenth, and eleventh) strongly suggests that 
students need opportunities to learn structural 
knowledge in order to achieve deep understanding of 
certain science concepts. It also suggests that it may not 
be enough to simply teach new patterns, particularly 
when they depart significantly from students' default 
assumptions. Presumably, unless students become 
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reflective about the ways in which they are structuring 
concepts, they may later lapse back to simpler 
structures. 

We contrasted the performance of three groups of 
students: (1) students who learned science concepts as 
typically taught-with a focus solely on the conceptual 
knowledge; (2) students who learned science concepts 
with supporting activities designed to reveal the 
underlying structural knowledge (Activities Only or 
AO); (3) students who learned science concepts with 
supporting activities designed to reveal the underlying 
structural knowledge and with explicit discussion about 
the nature of the underlying causality (Activities and 
Discussion or AD). Students in the AO and AD groups 
engaged in the activities designed to REveal CAusal 
STructure or help students RECAST their 
understandings. Students in the AD group were asked 
to consider the differences between the CAusal 
STructure or CAST that they implicitly included in their 
own models in contrast to those of scientists. The 
context for all groups was a set of curriculum units 
incorporating best practices (Socratic discussion, 
inquiry-based activities, computer simulations, 
discrepant events, and starting with initial conceptions). 
Students participated in units on simple circuits, 
pressure, density, force and motion, and ecosystems. 

The RECAST activities and discussion involved 
students in thinking about the structure of their 
knowledge-how their assumptions about the nature of 
causality influence their grasp of the conceptual 
knowledge. What are RECAST activities like? The 
following activity, designed to help students analyze 
pressure-related phenomena using interactive or 
relational causal patterns (Beii-Basca & Gratzer, 2001 ), 
provides an example. Typically, students interpret what 
happens when you suck on a straw in terms of simple 
linear causality, such as "sucking pulls the liquid up the 
straw," or they offer token explanations (Perkins & 
Gratzer, 2000) that they do not fully understand, such 
as "it happens because of a vacuum." In order to reveal 
that a pressure differential, a type of interactive 
causality, is in play, students are given three different 
flasks, each half-filled with liquid with a straw inserted, 
and are asked to see who can drink the liquid the 
fastest. Two of the flask/straw systems have various 
modifications that prevent the formation of a pressure 
differential. One has a hole in the straw above the 
height of the liquid that enables the lower pressure 
inside the straw to equalize with the outside air 
pressure, thus preventing the formation of a pressure 
differential so that the liquid will not rise up the straw 
when students suck on it. The other has a stopper at the 
top that is sealed tightly around the rim with a hole that 
exactly fits the size of the straw. When students try to 
drink from it, some liquid rises up the straw, lowering 
the air pressure inside the flask to match the lowered 
air pressure in the straw, making it nearly impossible to 
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drink any more liquid. (This activity was adapted from 
one by Liem, 1992.) Activities such as these reveal, 
through resu Its that are discrepant with students' 
expectations, that something other than linear causality 
is involved and offer insights into the nature of that 
causality. 

Students in all three groups began with conceptions 
that fit those expected based upon the defau It 
assumptions outlined above. For instance, in a unit on 
simple circuits, the following explanations were 
common: "The electrons go to the bulb to make it 
light." "The protons go up one wire and the elebrons 
up the other and they clash in the bulb" (Gratzer & 
Sudbury, 2000). Notice the underlying simple linear 
structure in comparison to an explanation, such as 
"Electrons are all along the wire. When you hook it up 
to the battery, each electron simultaneously repels the 
ones in front of it to cause flow. There is movement all 
at once around the circuit." The latter contains an 
underlying cyclic simultaneous causality that suspends 
temporal priority between causes and effects and 
allows for electrons to play the role of a cause and an 
effect at the same time. Similar simple linear models 
were used to describe the role of density in sinking and 
floating, for instance "The weight makes it sink." "It 
sinks or floats based upon how heavy it is" (Houghton, 
Record, Gratzer, & Bell, 2000). Contrast this to: 
"Whether it sinks or floats depends upon the density of 
the object in relation to the density of the liquid. 
Whichever is denser will sink." Notice that the latter 
explanation involves a relational or interactive type of 
causality where neither the object nor the liquid is 
solely responsible for the outcome, rather it is the 
relationship of densities to one another. We found 
similar types of conceptions in the other topics. 

Across most topics, we found support for the value 
of engaging students in RECAST activities. On pressure 
(see Beii-Basca & Gratzer, 2001 ), we found significant 
gains in understanding in students who participated in 
RECAST activities. On ecosystems (see Gratzer & Beii­
Basca, 2001 ), third-graders who participated in RECAST 
activities outperformed control students on the type of 
causal connections that students detected within food 
webs-noticing more direct, indirect, and multi-step 
links. For one topic, electrical circuits, RECAST 
activities alone were not enough to make a difference 
and there was significant benefit to adding explicit 
discussion of the structural puzzles (see Gratzer & 
Sudbury, 2000). An analysis of the topics suggests that 
the complexity of the causality to be learned may 
interact with the type of intervention needed to learn iti 
with RECAST activities being sufficient to learn less 
complex patterns and discussion of the causal patterns 
boosting performance when the patterns are more 
complex. 

It is not the current state of educational practice for 
educators to teach structural knowledge. However, our 
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research results suggest that structural knowledge is so 
linked to students' ability to grasp conceptual 
knowledge that it cannot be ignored in efforts to teach 
for deep understanding. Elsewhere (Perkins & Gratzer, 
2000), we have outlined a taxonomy of the kinds of 
structural knowledge about causality that students are 
likely to encounter in their science learning and are 
designing ways to teach it. 

A New Role for Educational Technology: 
Helping Students Build Structural Knowledge 

Even if educators wish to offer opportunities, 
building more complex forms of structural knowledge 
is not a trivial challenge. To begin with, students need 
to deal with difficulties that are associated with greater 
complexity in general, for instance, increased levels of 
abstraction, inferred entities, and greater cognitive load. 
Beyond that students need to learn to handle the 
complexities inherent in the particular structural 
knowledge, such as suspending the notion of temporal 
priority in order to understand the circuit in steady 
state. As has been suggested by successful computer 
programs that aim to teach conceptual knowledge, 
technology holds promise for scaffolding students' 
ability to manage both types of complexity. Computers 
make dynamic and interactive representations possible 
(Nickerson, 1995). Jonassen (2000) has argued that 
computers can play the role of "mindtools"­
intellectual partners that engage students in and 
facilitate higher-order thinking. 

So educational technology may offer a promising 
avenue for helping students revise their structural 
knowledge. What might such programs look like? How 
can one teach structural knowledge in ways that are 
accessible and engaging to students? Next, I consider 
StarLogo, a program that exemplifies how technology 
can help in the aim to teach structural knowledge. 

StarLogo (Resnick, 1994) is a computer modeling 
environment designed for exploring systems with 
multiple interacting components. It was developed by 
Mitch Resnick of the MIT Media Lab. It extends the 
concept of LOGO in which there is one programmable 
"turtle." StarLogo involves hundreds or thousands of 
turtles. The turtles represent different agents and can be 
used to model a variety of phenomena. Users are able 
to program the behavior of the turtles through the use 
of simple commands and the environment where the 
turtles interact through the use of "patches" that are 
comp!Jtationally active and follow a set of rules 
programmed by the user (Wilensky & Resnick, 1999). 

How does StarLogo teach structural knowledge? 
Simple rules of behavior at the lowest levels of a system 
can often lead to complex outcomes. For example, in a 
traffic jam, individual drivers behave according to 
certain rules (move into the fastest moving lane; try to 
minimize starting and stopping). These actions lead in 
non-linear fashion to complex emergent effects and a 
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new level at which to analyze the system-at the level 
of a new "object"-the traffic jam. Interestingly, if you 
change the rules a very little bit at the lowest levels, the 
emergent effects can be radically altered. By 
experimenting with StarLogo, students learn about the 
nature of emergent causality. It is also possible for 
students to simulate actual rules that particular 
organisms or objects follow and to then learn how 
emergent causality structures the particular conceptual 
knowledge of the topic. However, students can just as 
easily experiment with a variety of rules that don't 
necessarily represent reality such that the primary 
lesson is about the nature of emergence in complex 
systems. 

StarLogo is a promising example because it engages 
students in inquiry-based explorations, builds upon 
their ideas and interests, and enables them to see the 
dynamic emergent effects of the simple rules that they 
program. It often produces outcomes that are 
discrepant with students' expectations and therefore 
reveals the mismatch between the causal structures 
they are assuming and those reflected in the 
phenomenon being modeled. StarLogo also integrates 
other forms of knowledge. Students learn to specify the 
inputs in terms of specific sets of procedures and can 
certainly input rules that fit the available information in 
a domain to help them conceptualize patterns that 
might fit with scientifically accepted explanations. 
While StarLogo is, in my opinion, one of the best 
examples of technology that holds the potential to 
teach structural knowledge, it is not necessarily the 
only example. According to Jonassen (2000), programs 
such as Stella (High Performance Systems, 1987) and 
Model-it (HI-C, 1995) enable students to create run­
able models to test dynamic systems concepts, 
potentially revealing certain kinds of structural 
knowledge. 

Concluding Remarks 
Whether such a shift in educational technology is on 

the horizon remains to be seen. If it is, it will most 
certainly be accompanied by a corresponding shift in 
how we view the nature of knowing and subsequently, 
teaching and learning. Structural knowledge is perhaps 
the most invisible of the three knowledge types and yet, 
perhaps, also the most pervasive. While this is a 
relatively new area of inquiry, the results of our 
research suggest that it definitely is an area for further 
investigation, even if definitive statements are 
premature. It is likely that we won't learn the power of 
teaching structural knowledge until we develop 
educational technologies like StarLogo that enable us to 
teach it well. When we do, structural knowledge may 
take its place with conceptual and procedural 
knowledge and a triadic focus with attention to the 
dynamics between the three types of knowledge may 
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prove most effective in helping students develop deep 
understanding. D 

References 

Bank Street College of Education. (1985). The voyage of the 
Mimi [Computer Software]. New York: Bank Street College 
of Education. 

Beii-Basca, B., & Grotzer, T.A. (2001, April). Focusing on the 
nature of causality in a unit on pressure: How does it affect 
student understsanding? Paper presented at the Annual 
Conference of the National Association for Research in 
Science Teaching (NARST), Seattle; http://www.pzweb. 
harvard.edu/Research/U nderCon.htm 

Bransford, J., Brown, A., & Cocking, R. (1999). How people 
learn. Washington, DC: National Academy Press, National 
Research Council. 

Bullock, M., Gelman, R., & Baillargeon, R. (1982). The 
development of causal reasoning. In W. J. Friedman (Ed.), 
The developmental psychology of time (pp. 209-254). 
New York: Academic Press. 

Champagne, A. B., Klopfer, L. E., Desena, A. T., & Squires, 
D. A. (1981 ). Structural representations of students' 
knowledge before and after science instruction. journal of 
Research in Science Teaching, 18, 97-111. 

Chi, M. (2000, April). Misunderstanding emergent processes 
as causal. Paper presented at the Annual Conference of the 
American Educational Research Association (AERA), New 
Orleans, LA. 

Collins, A., & Ferguson, W. (1993). Epistemic forms and 
epistemic games: Structures and strategies to guide inquiry. 
Educational Psychologist, 28(1 ), 25-42. 

Concord Consortium. (1997). Genscope. Concord, MA: 
Concord Consortium; http://www.genscope.concord.org 

Dehaene, S. (1997). The number sense. Oxford: Oxford 
University Press. 

De Laurentis, E. (1980, December). Learning by interactive 
programming: Microcomputer applications. Educational 
Technology, 20(12), 1 0-14. 

Diekhoff, G. M. (1983). Relationship judgements in the 
evaluation of structural understanding. journal of 
Educational Psychology, 75, 227-233. 

Dorner, D. (1989). The logic of failure. New York: 
Metropolitan Books. 

Driver, R., Guesne, E., & Tiberghien, A. (1985). Some features 
of children's ideas and their implications for teaching. In 
R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children's 
ideas in science (pp. 193-201 ). Philadelphia: Open 
University Press. 

Dunbar, K., & Klahr, D. (1989). Developmental differences in 
scientific discovery processes. In D. Klahr & K. Kotovsky 
(Eds.) Complex information processing: The impact of 
Herbert A. Simon (pp. 109-143). Hillsdale, NJ: Lawrence 
Erlbaum Associates. 

Goldhammer, A., & Isenberg, S. (1984). Operation Frog. New 
York: Scholastic. 

Grotzer, T. A. (1993 ). Children's understanding of complex 
causal relationships in natural systems. Unpublished 
doctoral dissertation. Cambridge, MA: Harvard University 
Press. 

Grotzer, T. A., & Bell, B. (1999). Negotiating the funnel: 

58 

Guiding students toward understanding elusive generative 
concepts. In L. Hetland & S. Veenema (Eds.), The Project 
Zero classroom: Views on understanding. Cambridge, MA: 
Fellows and Trustees of Harvard College. 

Grotzer, T. A., & Beii-Basca, B. (2001, January). Teaching 
about the nature of causality in an ecosystems curriculum: 
How does it affect student understanding? Unpublished 
paper, Harvard Project Zero, Cambridge, MA. 

Grotzer, T. A., & Perkins, D. N. (2000, April). A taxonomy of 
causal models: The conceptual leaps between models and 
students' reflections on them. Paper presented at the 
Annual Conference of the National Association for 
Research in Science Teaching, New Orlearls, LA; 
http://www .zweb .harvard.edu/Research/U nderCon. htm 

Grotzer, T. A., & Sudbury, M. (2000, April). Moving beyond 
underlying linear causal models of electrical circuits. 
Paper presented at the Annual Conference of the National 
Association for Research in Science Teaching, New 
Orleans, LA; http://www.pzweb.harvard.edu/Research/ 
UnderCon.htm 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural 
knowledge in mathematics: An introductory analysis. In J. 
Hiebert (Ed.), Conceptual and procedural knowledge: The 
case of mathematics (pp. 1-23). Hillsdale, NJ: Lawrence 
Erlbaum Associates. 

HI-C (Highly Interactive Computing). (1995). Model-ft. Ann 
Arbor: University of Michigan. 

High Performance Systems. (1987). Stella. Lyme: NH: High 
Performance Systems. 

Houghton, C., Record, K., Grotzer, T. A., & Bell, B. (2000, 
April). Conceptualizing density with a relational systemic 
model. Paper presented at the Annual Conference of the 
National Association for Research in Science Teaching, 
New Orleans, LA. 

Jonassen, D. H. (2000). Computers as mindtools for schools: 
Engaging critical thinking (2nd ed.). Columbus, OH: 
Merrill. 

Jonassen, D. H., Beissner, K., & Yacci, M. (1993). Structural 
knowledge: Techniques for representing, conveying, and 
acquiring structural knowledge. Hillsdale, NJ: Lawrence 
Erlbaum Associates. 

Kalish, C. (1997). Preschooler's understanding of mental and 
bodily reactions to contamination: What you don't know 
can hurt you but can't sadden you. Developmental 
Psychology, 33(1 ), 79-91. 

Keegan, M. (1993, June). Design and effects of scenario 
educational software. Educational Technology, 33(5), 19-
25. 

Kuhn, D., Amsel, E., & O'Loughlin, M. (1988). The 
development of scientific thinking skills. Orlando: 
Academic Press. 

Lawless, J. G., & Coppola, R., (1996). GLOBE: Earth as our 
backyard. Geotimes, 47(9), 28-30. 

Levi dow, B. B., Hunt, E., & McKee, C. (1991 ). The 
DIAGNOSER: A HyperCard tool for building theoretically 
based tutorials. Behavior Research Methods, Instruments, 
and Computers, 23, 249-252. 

Lewis, E., Stern, J., & Linn, M. (1993, January). The effect of 
computer simulations on introductory thermodynamics 
understanding. Educational Technology, 33(1 ), 45-58. 

Liem, T. L. (1992). Invitations to science inquiry. Chino Hills, 
CA: Science Inquiry Enterprises. 

EDUCATIONAL TECHNOLOGY/March-April2002 



Mace, S. (1984, July 23). Science for the home: New products 
tackle such weighty subjects as immunology, chemistry. 
lnfoWor/d, 34-35. 

Markman, E. (1989). Categorization and naming in children: 
Problems of induction. Cambridge, MA: MIT Press. 

Menis,Y., Snyder, M., & Ben-Kohav, E. (1980). Improving 
achievement in algebra by means of the computer. 
Educational Technology, 20(8), 19-22. 

Morrison, D., & Collins, A. (1995). Epistemic fluency and 
constructivist learning environments. Educational 
Technology, 35(5), 39-45. 

Nickerson, R. (1995). Can technology help teach for 
understanding? In D. N. Perkins, ]. L. Schwartz, M. M. 
West, & M. S. Wiske (Eds.), Software goes to school: 
Teaching for understanding with new technologies (pp. 7-
22). New York: Oxford University Press. 

Papert, S. (1980). Mindstorms: Children, computers, and 
powerful ideas. New York: Basic Books. 

Pea, R. (1993). Distributed multimedia learning environments: 
The Collaborative Visualization Project. Communications 
of the ACM, 36(5), 60-63. 

Perkins, D. N., & Crotzer, T. A. (2000, April). Models and 
moves: Focusing on dimensions of causal complexity to 
achieve deeper scientific understanding. Paper presented 
at the Annual Conference of the American Educational 
Research Association (AERA), New Orleans, LA; 
http://www.pzweb.harvard.edu/Research/UnderCon.htm 

Perkins, D. N., & Simmons, R. (1988). Patterns of 
misunderstanding: An integrative model of misconceptions 
in science, mathematics, and programming. Review of 
Educational Research, 58(3), 303-326. 

Perkins, D. N., & Unger, C. (1994). A new look in 
representations for mathematics and science learning. 
Instructional Science, 22, 1-3 7. 

Preece, P. F. W. (1976). Mapping cognitive structure: A 
comparison of methods. journal of Educational 
Psychology, 68, 1-8. 

Resnick, M. (1994). Turtles, termites, and traffic jams: 
Explorations in massively parallel microworlds. 
Cambridge, MA: MIT Press. 

Rohrer-Murphy, L. (2000). Validating measures of structural 
knowledge. Dissertation Abstracts International 60(8-B) 
4268. 

Rosch, E., Mervis, C. B., Gray, W. D., johnson, D. M., & 
Boyes-Braem, P. (1976). Basic objects in natural 
categories. Cognitive Psychology 8, 382-439. 

Scardamalia, M., Bereiter, C., & Lamon, M. (1994). The CSILE 
project: Trying to bring the classroom into world 3. In K. 
McGilly (Ed.) Classroom lessons: Integrating cognitive 
theory and classroom practice (pp. 201-228). Cambridge, 
MA: MIT Press. 

Scardamalia, M., Bereiter, C., Mclean, R. S., Swallow, ]., & 
Woodruff, E. (1989). Computer-supported intentional 
learning environments. journal of Educational Computing 
Research, 5(1), 51-68. 

Shavelson, R. ]. (1972). Some aspects of the correspondence 
between content structure and cognitive structure in 
physics instruction. journal of Educational Psychology, 63, 
225-234. 

Shipstone, D. (1985). Electricity in simple circuits. In R. 
Driver, E. Guesne, & A. Tiberghien (Eds.), Children's ideas 
in science (pp. 33-51 ). Philadelphia: Open University. 

EDUCATIONAL TECHNOLOGY/March-April 2002 

Siegler, R., & Liebert, R. (1974). Effects of contiguity, 
regularity, and age on children's causal inferences. 
Developmental Psychology, 10, 574-579. 

Simic, M. (1994). Computer assisted writing instruction. 
Bloomington, IN: ERIC Digest: ERIC Clearinghouse on 
Reading, English, and Communication (ERIC Document 
Reproduction Service No. ED376474). 

Slotta, ]. D., & Chi, M. T. (1999, March). Overcoming robust 
misconceptions through ontology training. Unpublished 
paper. 

Snir, Y., Raz, G., Smith, C., Grosslight, L., & Unger, C. (1994). 
Archimedes and beyond: Helping middle school students 
to construct an understanding of density and matter. 
Cambridge, MA: Educational Technology Center, Harvard 
University. 

Spelke, E., Phillips, A., & Woodward, A. L. (1996). Infant's 
knowledge of object motion and human action. In D. 
Sperber, D. Premack, & A. j. Premack, (Eds.), Causal 
cognition: A multidisciplinary debate. Oxford: Clarendon 
Press. 

Stark Design. (1999). Molecular Dynamics; http://www. 
starkdesign.com/ 

Wells, B.]., & Bell, D. S. (1980, March). A new approach to 
teaching reading comprehension: Using cloze and 
computer-assisted instruction. Educational Technology, 
20(3), 49-51. 

White, B., & Horwitz, P. (1987). ThinkerTools: Enabling 
children to understand physical laws. BBN Report 6470. 
Cambridge, MA: Bolt, Beranek, & Newman. 

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A 
dynamic systems approach to making sense of the world. 
journal of Science Education and Technology, 8(1) 3-19. 

Wiser, M., & Kipman, D. (1988). The differentiation of heat 
and temperature: An evaluation of the effect of 
microcomputer models on students' misconceptions. Tech 
Report 88-20. Cambridge, MA: Educational Technology 
Center, Harvard University. 

Zohar, A. (in press). Higher order thinking in science 
classrooms: Students' learning and teachers' professional 
development. New York: Kluwer Academic Press. 

Forthcoming Articles 

Among the articles scheduled to appear in the pages 
of this magazine during this year are the following: 

• The Evolution of Authoring Tools and Hypermedia 
Learning Systems: Current and Future Applica­
tions. 

• What Hardware and Software Are Most Critical for 
Learning Effectively with Technology? 

• Can a Community of Practice Exist Online? 
• Laptops and University Students: A Review and 

Survey. 
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