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SCIENCE IS MORE BAFFLING THAN MAGIC 

A magician locks his assistant into a cabinet and waves a wand. When he 
opens the cabinet, the assistant has disappeared-only to reappear in a cabinet 
on the other side of the stage. Breaking tradition, the magician challenges the 
audience to explain how it was done. 

Most people say: 'a trap door.' The magician invites people to tour the stage 
as active investigators. N o  trap door is apparent, but still they say, 'a trap 
door.' Surprised, the magician decides to reveal all. He explains that there are 
twin assistants. The first assistant is still in a hidden space inside the first 
cabinet; the second was already hidden in the second cabinet. He shows the 
audience the two assistants side by side. The audience members examine the 
cabinet. Most are convinced for the moment, but a week later, many are 
saying, 'you know, it was really a trap door.' 
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This story is not very plausible. People examining the stage carefully would 
probably be convinced that there was no trap door. People seeing the twins 
side by side would probably embrace that theory and stay with it. 

However, the stubborn adherence to an initial theory we would not expect to 
encounter on the magician's stage we see all the time in science classrooms 
throughout the world. Students often develop tacit theories of their own about 
scientific phenomena, and in some settings science teaching uses an inquiry 
approach that encouragesthem to formulate explicit theories. So far so good, 
but students' theories usually diverge considerably from established scientific 
views, and yet students tend to cling to them in the face of apparent counter- 
evidence. Even when students go on to contrast their theories with the 
scientifically accepted view, examine further evidence in support of each, and 
appear persuaded, they typically relapse to their initial views when trying to 
explain phenomena, although often remembering the 'official story' for the test. 
What is not such a plausible scenario for the magician's audience occurs all the 
time in science learning. For many a learner, science is more baffling than magic. 

Why does this happen? One source of the problem is certainly the specific 
difficulties posed by particular concepts and theories. However, more general 
factors may also figure in learners' troubles. In the story of the magician, 
notice how accessible the twin explanation is. It is no more exotic than the 
trap door explanation, making a shift from the trap door view to the twin view 
relatively easy. Both reflect the commonsense world of everyday things and 
actions. In contrast, most scientific models go well beyond causal explanations 
of ordinary events. They posit invisible entities like electrons, rules like Boyle's 
Law that govern the global behaviour of systems, and large-scale patterns of 
action emergent from small-scale interactions, as with the gas laws. They 
entail far greater complexity than everyday explanation. 

This article argues that an important source of the difficulty is the narrow 
range of types of causal models with which most learners are familiar. We have 
in mind the contrast between, for example, simple causal chains (A affects B 
affects C)  versus constraint system models, as with Ohm's Law, or with cyclic 
causal models, as in predator-prey interactions in an ecosystem, where prey 
provides food for predators while predators cull unhealthy prey and keep the 
prey population from exploding beyond the capacity of the environment. 
Most learners are only familiar with relatively simple styles of causal models, 
but many concepts and theories in science depend on styles substantially more 
complex in ways that we will define shortly. 

Dimensions of Causal Understonding 

It is important to acknowledge that modelling as an activity relevant to 
science learning has received considerable attention in recent years. The 
development of constructivist pedagogy in science education has done much 
to foster students' sophistication about inquiry, encouraging thern to 
formulate theories, test hypotheses, seek consistency, and so on. Conceptual 
change theories of learning have encouraged a more reflective stance on 
students' initial and evolving conceptions (Posner, Strike, Hewson & Gertzog, 
1982). In the past decade, science education has come to recognize the 
important role of modelling in how scientists develop and test explanations 
(e.g., Penner, Giles, Lehrer, & Schauble, 1997; Ost, 1957; Stewart, Hafner, 
Johnson & Finkel, 1992). Increasingly, students are encouraged to create and 
test models of concepts and to engage in the systematic revision of models as 
they trade up for models with the most explanatory power towards the 
scientifically accepted explanations. This emphasis on student modelling of 
concepts has been shown to result in deeper understanding (e.g., Gobert & 
Clement, 1999). 

These are all positive developments. However, when we refer to  styles of 
causal models, we have in mind more than just fostering the process of building 
models; we want to highlight learners' repertoires of various types of models. 
Despite an increased focus on modelling, and important work on how students 
reason about complex forms of causality by Chi (e.g., 2000; Chi & Slotta, 
1993), Resnick (e.g., 1994, 1996; Wilensky & Resnick, 1999) and others, 
attention to students' repertoires has been quite limited. 

We offer an analysis of four dimensions of complex causality and argue that 
the increasingly complex styles along the dimensions present challenges that 
help to explain students' difficulties in mastering science concepts. We present 
two kinds of evidence in support of this argument. First, we offer analyses of 
students' understanding of several challenging science concepts based on the 
extant literature and our research. Second, we report two intervention studies 
that we conducted, involving teaching interventions where cultivating greater 
complexity in students' causal models led to better understanding. The 
interventions do not involve the teaching of modelling styles in the abstract, 
but rather context-situated, inquiry-centered learning experiences that draw 
students' attention to how they are modelling the causality involved in 
particular phenomena and encourage more sophisticated causal modelling, 
embedded in their science learning. 
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A PERFORMANCE VIEW OF SCIENCE UNDERSTANDING 

To introduce this perspective, it is useful to  take a performance view of science 
understanding. What kinds of 'performances' are learners actually asked to 
attempt around science concepts that build their understanding? For instance, 
what sorts of problems do they solve, experiments do they conduct, and 
phenomena do they analyze? Such questions resonate with the general notion 
of learning as doing and with the constructivist emphasis on inquiry activities 
as an avenue to understanding (e.g., Duffy & Jonassen, 1992; Perkins, 1999; 
Phillips, 1995; Wilson, 1996). They also allude to a constructivist framework 
developed by the first author and colleagues called 'Teaching for 
Understanding' or 'TfU (e.g., Perkins & Unger, 1999; Wiske, 1998). TfU 
foregrounds the role of understanding performances in learning for 
understanding-understanding performances being thought-demanding 
activities that display a learner's present understanding as well as advancing it 
further. 

Reflecting on  typical science learning reveals at least three levels of 
performance beyond learning particular, isolated facts. We argue that the 
third, although found least often, offers the best prospects for preparing 
students to understand a range of science concepts. 

1. Learning and applying specific models. Most students learn particular 
models for particular situations. For instance, they learn how to model 
the fall of released objects in a gravitational field. They can calculate how 
long an object will take to  hit the ground or how fast it will be going. 

2. Learning and applying modelling systems. Some students learn general 
modelling systems, for instance Ohm's Law and related rules for analyzing 
circuits that are sometimes quite complex, or Newtonian dynamics for 
analyzing a range of physical motions. Here the core performance is to  
use the modelling system to build and perhaps test a model for a given 
system, for instance, a complex circuit that students have never seen 
before. 

3. Learning and reusing modelling styles. Some students eventually become 
familiar with a range of modelling styles. For example, students who have 
seen circuits modelled with Ohm's Law, gases modelled with Boyle's Law, 
and dynamic systems modelled with Newton's laws and conservation of 
energy may come to recognize modelling by constraint equations as a 
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familiar game. Faced with another set of scientific concepts in the same 
style, they may feel comfortable with the manner of thinking involved and 
proceed with some confidence and skill to learn and apply the concepts. 
There are many modelling styles, as will be seen. By way of preview, a 
couple of others are decentralized control systems, as in flocks of birds or 
schools of fish where there is no one leader, and large-scale effects due to 
small-scale statistical processes of equilibration, as in erosion or the gas 
laws or free-market economies. 

Comparing the three levels, those familiar with patterns of science education 
will recognize that the first is the most common, the second less so, and the 
third rather rare. When versions of the third type do occur, typically in the 
context of inquiry-based instruction, they usually foreground inquiry processes 
(look for logical inconsistencies, design tests, gather evidence), but rarely deal 
explicitly with different modelling styles. In general, science instruction hardly 
ever stands back to examine the general styles of modelling that figure in 
various   articular theories. Students who catch on to such styles do so on their 
own, by and large. 

This situation, we propose, is an important source of students' problems in 
understanding science. As students progress through the years, they encounter 
a wide range of science concepts involving modelling styles that are 
increasingly removed from common sense and everyday experience. Without 
specific help in understanding these modelling styles, students fail to  grasp how 
particular modelling systems and models work. They resort to  routines for 
familiar types of problems-level 1 above-their mastery of the routines 
masking their lack of real understanding. Some textbooks and teachers are 
complicit in this, foregrounding routines to  secure an acceptable albeit shallow 
level of performance. 

COMPLEX MODELLING STYLES AS A LEARNING BOTTLENECK 

Naturally, some concepts confuse students only for lack of an opportunity to  
learn. For example, 4- to 7-year-olds hold less biological knowledge than older 
children and typically do not have adult-like concepts of living things (Piaget, 
1929). However, by age 9 or 10 there is a marked increase in biological 
knowledge, and typically by age 11 (Carey, 1985) and perhaps earlier (Carey, 
1995), children hold an adult-like conception of living things. This is not to  
imply that all confusions have vanished. However, with time, experience, and 
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conventional schooling, youngsters do develop a concept of biological 
functioning. 

More interesting from the present perspective are concepts that prove 
particularly resistant to learning. For example, when students study electricity, 
many arrive at  the idea that electrical current fills the circuit from point to 
point, affecting each component in turn within the circuit (Closset, 1983; 
Shipstone, 1984). This model is even held by students who have taken 
university courses and passed university level exams in physics (Picciarelli, 
Gennaro, Stella, & Conte, 1991). In contrast to this circuit-filling model, a 
more scientifically acceptable model pictures the electrons in all parts of a 
simple circuit moving at  the same time and with the same flow rate, rather like 
a bicycle chain, once the circuit achieves a steady state (e.g., Dupin & Johsua, 
1984; Grotzer & Sudbury, 2000; Hartel, 1984; Shipstone, 1985). 

Researchers have documented innumerable cases of science concepts that 
consistently, and despite good teaching, prove difficult for students (e.g., 
Clement, 1982; Driver, Guesne, & Tiberghien, 1985; McDermott, 1984; 
Novak, 1987). The present analysis proposes that many of these concepts 
characteristically involve complex (in ways to be defined below) causal 
modelling styles. Such styles do not simply extend but rather contradict 
simpler modelling styles. In the case of simple circuits, the circuit-filling model 
(e.g., Shipstone, 1985; Slotta & Chi, 1999) involves a kind of serial causality, 
like dominoes tipping over one after the other, whereas the bicycle-chain model 
involves a simultaneous causality, where everything happens at once (Grotzer 
& Sudbury, 2000). For other kinds of contradiction, scientific models 
sometimes replace an earlier or intuitive deterministic view by a probabilistic 
one, or a central causal agent by a system with emergent effects (Resnick, 
1994, 1996). Also, many scientific theories involve multiple layers of linked 
modelling systems, and the modelling systems at different levels contrast in 
their modelling styles, generating confusion (Frederiksen & White, 2000; 
Frederiksen, White, & Gutwill, 1999). 

Support for the idea that students' causal modelling is less than adequate for 
learning complex science concepts can be found in the research literature. 
Driver and colleagues (Driver et al., 1985) outlined characteristics of student 
thinking that impede students' ability to grasp scientific concepts. Some of 
these characteristics concern how students reason about causality. For 
instance, students tend to focus on changes as opposed to  steady states, 
consequently failing to see a need to explain systems in equilibrium. Also, 
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students tend toward linear causal reasoning, looking only for sequential 
chains of causes and effects when systemic patterns are in play. 

Brown (1995) identifies core causal intuitions that can lead students astray when 
learning difficult science concepts. He points out several types of attributions of 
agency-initiating, initiated, reactive, and so on-that can be misapplied. 
Andersson (1986) draws upon Lakoff and Johnson's (1980) notion of an 
experiential Gestalt of causation as a possible underlying element in scientific 
misconceptions. He considers how students extend the primitive notion, learned 
in infancy, of an agent that physically affects an object to a sense of 'the nearer, 
the greater the effect.' Andersson outlines how this and like notions play a role 
in difficulties students have in learning various science concepts. 

Chi (1992, 2000) argues that students' struggles reflect misunderstandings 
about the ontological status of concepts: students mistakenly assign causal 
attributes to processes that have structures of emergence, which in her 
terminology are essentially non-causal. diSessa (1993) introduced the concept 
of phenomenological primitives (p-prims), small knowledge structures that 
people use to describe a system's behaviour. Though not necessarily 
generalizable beyond the particular contexts that elicit them, these schemata 
come into play as ready explanations or components of explanations. While 
often considered to be self-explanatory and to need no justification, p-prims in 
their very accessibility can lure children and adults into mistaken explanations. 

Complex modelling styles are all the more challenging because students are not 
adept at patterns of inquiry that reveal weaknesses in simpler models and drive 
toward models with greater explanatory power. In everyday argument, people 
commonly make convenient assumptions, neglect alternatives, excuse and 
patch favoured theories, and so on (e.g., Voss, Perkins, & Segal, 1991). Kuhn's 
(1991, 1993) research identifies a number of shortfalls in students' general and 
scientific reasoning, including difficulty in generating counter-evidence and 
persistence of a favoured theory despite blatant counter-evidence. Kuhn, 
Amsel, and O'Loughlin (1988) have shown that students' prior expectations 
make it hard for them to perceive co-variation evidence that contradicts their 
expectations. For instance, students have difficulty perceiving instances where 
a variable is non-operative or is operative but leads to  a different outcome than 
students expect. 

Sandoval (2003) found that for the most part, students sought plausible accounts 
of available data, understood the need for coherent explanations, and were able 
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to develop them. However, they seemed more inclined to generate what they 
perceived as a right answer than to support their claims by using the data as 
evidence in support of a theory. Chinn and Brewer (1993) review research and 
examples from the history of science in support of seven possible responses to 
anomalous data in the development and revision of theories. They argue that the 
likelihood of changing one's theory is not particularly high and that it is much 
more common for individuals to patch their theories, or to ignore or reject the 
anomalous data, than to take the data into account and revise one's theory. 

In summary, such research suggests that the manner in which we reason about 
causality influences how we analyze specific instances of causation in science class 
and beyond. The present framework asserts that learners tend to assimilate 
scientific concepts to a limited repertoire of causal modelling styles that are 
relatively simple, as specified below. An important instructional implication 
follows: learners will find whole ranges of complex science concepts more 
accessible when the instruction familiarizes them with the types of models involved, 
not in the abstract but in the context of the science concepts to be learned. 

We develop our argument as follows. The following section explicates four 
dimensions of complexity for causal models. After that, we report evidence 
from the literature and some studies of our own suggesting that learners' early 
models indeed fall a t  relatively low levels of complexity on the dimensions. 
This is not terribly surprising, but it does substantiate the notion that the levels 
defined as 'simpler' are indeed more accessible, illustrates how the dimensions 
apply to  several topics, and helps to explain what makes them difficult. 

Next, we report two intervention studies designed with the dimensions in 
mind. The studies sought to enrich students' causal modelling styles and 
thereby advance their understanding in two problematic areas of science 
learning, electrical circuits and density. The positive results offer evidence for 
our framework, but the case is not meant to stand on those alone. These 
studies are representative of a larger body of evidence (e.g., Basca & Grotzer, 
2001; Grotzer & Basca, 2003; Grotzer & Sudbury, 2000; Houghton, Record, 
Bell & Grotzer, 2000), the trends of which will be discussed below. 

FOUR DIMENSIONS OF COMPLEXITY IN CAUSAL MODELS 

The central notion behind this framework is complex catrsality: some 
explanations are more complex than others in fundamental ways. But what do 

we mean by 'complex?' We recruit the term from its natural language origins 
as an apt umbrella term. The science concepts examined are 'complex' in 
several different senses already illustrated-because of simultaneous models at 
different levels, more intricate causal relationships than simply 'A causes B,' 
models that conflict with typical expectations, and other senses are elaborated 
below. There is no implication that the label 'complex' suits each of these 
senses equally, only that it fits the overall tenor of the analysis well enough to 
provide a convenient label. 

Table 1 presents four proposed dimensions of complexity in models: 
Mechanism, Interaction Pattern, Probability, and Agency. Relative to  these 
dimensions, the causal explanations that people offer for everyday events are 
simple in several senses. Recall again the accessibility of the twins explanation 
for the magician's trick. As to Mechanism, the twins explanation depends on 
ordinary ideas about a familiar world, what Table 1 calls commonplace 
elements. As to Interaction Pattern, the twins explan2tion proposes a simple 
linear causal relationship: the similarity of twins causes people to think it's the 
same person. As to Probability, the causal relationship is close to deterministic: 
the perceptual similarity of the twins triggers a perception of the same person, 
unless an observer sees them side-by-side. As to Agency, there is a central 
agent: the magician, with the collusion of the twins, creates the illusion. 

In contrast, scientific models exhibit greater complexity, usually on more than 
one of the four dimensions. Evolution explained by natural selection and 
elementary electrical phenomena explained by Ohm's Law and the behaviour 
of electrons serve as illustrations for this introduction. Further examples 
appear in the course of the article. Italics refer to categories in the framework: 

Mechanism. This dimension refers to the causal mechanisms invoked in 
an explanation. At their simplest, they take the form of (not necessarily 
correct) surface generalizations from experience, like 'animals learn their 
necks need to be longer' or the token use of labels like 'the balloon sticks 
to the wall because of static electricity.' Scientific explanation typically 
involves one or more levels of underlying mechanism involving properties, 
entities, and rules that are not part of the surface situation, as with DNA 
or electrons and the rule systems governing them. Often the deep 
explanation entails inferred or posited entities that are part of the 
scientifically accepted explanation, but not easily verifiable by non- 
scientists. 
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whereas older children included an underlying mechanism (Lehrer & Schauble, 
1998). On the other hand, there is also evidence that relatively young children 
display some understanding of more complex concepts along the dimensions in 
the right contexts. For instance, analogical models are placed toward the 
complex end along the dimension of Mechanism and, while young children do 
not typically construct analogical explanations of science phenomena at the 
level of scientific experts, they do indeed have a developing understanding of 
analogy (e.g., Goswami, 1992). (An in-depth discussion of developn~ental 
issues can be found in Grotzer, 2003.) Moreover, each level of the four 
dimensions within itself allows simpler and more complex variations. For 
example, entirely within the mediating cause level of Interaction Pattern, A 
causes M causes B seems a more accessible relationship than M catalyzes A 
causes B. Accordingly, our general claim is simply that difficulty increases 
roughly with complexity along the dimensions. 

With this emphasis on the challenges of complexity, the virtues of simplicity 
also need to be acknowledged. The simpler ends of the four complexity 
dimensions are not intrinsically 'wrong'. Explanations constructed out of them 
may suit very well the phenomenon or purpose at hand. The point, rather, is 
that typical scientific explanations routinely involve more complexity because 
the target phenomenon demands it, and often learners do'not manage to get 
there. 

How then do these more complex modelling styles make things harder for 
learners? One way is simply their lack of familiarity. Another, as noted earlier, 
is that some modelling styles of higher complexity do not simply elaborate but 
rather contradict other more familiar modelling styles of lower complexity. 
The more complex causal styles challenge basic assumptions about how the 
world works, such as that magnitude of effect correlates with magnitude of 
cause or temporal priority between causes and effects (Bullock, Gelman, & 
Baillargeon, 1982). Often today's scientific models replace an intuitive 
deterministic view by a probabilistic one, or a central causal agent by a system 
with emergent effects (Resnick, 1994, 1996). Moreover, a number of scientific 
theories include multiple layers of linked modelling systems with contrasting 
styles, as in the relation between the constraint system of Ohm's Laws applied 
to a whole circuit and the forces that govern current flow at the micro-level, 
which involve interactive causality (Frederiksen & White, 2000; Frederiksen et 
al., 1999). Students have a notoriously hard time coordinating different levels 
of explanation (Chi, 2000; Wilensky & Resnick, 1999). 

Others have noted the importance of one or more aspects of these dimensions 
in students' scientific misconceptions. For instance, attention has been paid to 
difficulties with issues of agency, such as expecting centralized rather than 
decentralized control structures (Resnick, 1996), or not recognizing the 
phenomenon of emergence (Resnick, 1994; Chi, 2000), or focusing on linear 
interaction patterns (e.g., Driver et al., 1985; Barbas & Psillos, 1997), or 
difficulties reasoning at and between different levels of mechanism (Chi, 2000; 
Frederiksen & White, 2000; Wilensky & Resnick, 1999). Our purpose in 
setting forth the dimensions of complex causality is to  offer a broader 
framework that can serve as a tool for analyzing the full range of difficulties in 
understanding causal structure. 

EVIDENCE FOR THE DIMENSIONS OF COMPLEX CAUSALITY FROM 
LEARNERS' INITIAL CONCEPTIONS 

With the dimensions of complex causality outlined, questions of evidence 
invite attention. Notice that the issue is not whether learners' initial 
conceptions are mistaken by the measure of contemporary science. They 
almost always would be, given the sophisticated knowledge behind 
scientifically accepted theories. Rather, the framework predicts that there 
would be a strong trend for initial conceptions of scientific phenomena to be 
low on the dimensions of complexity. 

We tested these implications by examining initial conceptions of several science 
topics, both in the literature and through classroom-based studies: electrical 
circuits, static electricity, density, ecosystems, and natural selection. The first 
and third are also the focus of intervention studies reported later. The results 
offer support for the framework. As acknowledged earlier, this is not terribly 
surprising, since we constructed the levels of complexity to be plausible. 
However, the results do affirm that that learners find more accessible the levels 
defined as 'simpler'. Also, the examples illustrate how the dimensions fit a 
range of topics and help to  explain what makes them 'more baffling than 
magic'. 

Electrical Circttits 

As noted earlier, researchers have pointed to  the difficulty that students have 
in conceiving of the circuit as a system (e.g., Dupin & Johsua, 1987; 
Shipstone, 1985) and in reasoning about the types of causality present in an 
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electrical circuit (Andersson, 1986; Barbas & Psillos, 1997). Students 
typically try to  analyze effects locally (Cohen, Eylon, & Ganiel, 1983; 
Shipstone, 1985) and following instruction, they commonly employ what can 
be called a 'cyclic sequential' causal pattern for how the current 'flows.' They 
envision the circuit as initially empty and filling with a 'substance-like 
material' (Slotta, 1997; Slotta & Chi, 1999) that eventually reaches the bulb 
and causes it to light. The current is seen as traveling from point to point and 
affecting each component in turn as it is encountered within the circuit 
(Closset, 1983; Shipstone, 1984). 

Slotta and Chi (1999) and Slotta (1997) have found that a substance notion of 
the electrical current, as opposed to a process notion, creates a major 
stumbling block for students learning to think about electrical circuits. Heller 
and Finley (1992) found that of the many misconceptions that teachers hold 
about the nature of the circuit, the belief that 'the circuit is initially empty of 
the 'stuff' that flows through the conductors' (p.268) is seldom modified or 
compromised. This belief fits firmly with a cyclic sequential model. The cyclic 
sequential model has been found even in university physics (Picciarelli et al., 
1991). 

In addition to  the focus on substance versus process (Chi & Slotta, 1993; 
Slotta & Chi, 1999), students' difficulties appear to  stem in part from 
elements of a persistent underlying linear causal model that students attempt 
to apply and from their lack of a repertoire of intermediate models of 
causality (Andersson, 1986; Grotzer & Sudbury, 2000; Rozier & Viennot, 
1991). Numerous researchers have demonstrated that students tend to create 
uni-polar models that join one part of the battery to one part of the bulb and 
describe 'flow' of electricity as moving from the battery to  the bulb (e.g., 
Andersson & Karrqvist, 1979; Fredette & Lochhead, 1980; Osborne & 
Gilbert, 1980; Tiberghien & Delacotte, 1976). These uni-polar models fit 
with a simple linear model of cause and effect in which one thing typically 
makes another thing happen in a domino-like pattern of effects. Turning to 
the dimensions, from the standpoint of Mechanism such learners are 
explaining electrical current with a token cause. Even when they refer to 
electrons, the electrons simply fit into a story of flow, rather than the flow 
reflecting a set of rules that applies to electrons. From the standpoint of 
Interaction Pattern, the students' accounts reflect simple linear causality: the 
battery pushes the electrons and the electrons in turn light the bulb. 
Regarding Probability, the system is seen as deterministic. Regarding Agency, 
there are, the battery and in turn the electrons. 
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Scientists, on the other hand, might envision the system at the particulate level as 
described by a 'cyclic simultaneous' kind of causality, where electrons already 
exist throughout the wire (Barbas & Psillos, 1997; Grotzer & Sudbury, 2000). 
Hooking the wire up to a battery causes flow, the excess negative charge in the 
battery repelling nearby electrons, which repel other electrons. As mentioned 
earlier, the net effect on the macro-scale is that current moves all at once, more 
like the movement of a bicycle chain (Shipstone, 1985). Scientists would 
characterize the overall system in terms of differentials between electrical potential 
or by a set of constraints. While there are electrons all along the wire, the battery 
creates an imbalance that results in flow as electrons move from areas of greater 
concentration towards areas of lesser concentration. Flow is a systems level effect. 

The scientists' account involves an elaborated underlying mechanism 
(Mechanism dimension) and relational, re-entrant (as the circuit renches 
equilibrium), and constraint-based (Ohm's Law) causality (Interaction 
Pattern). Scientists would view the circuit's behaviour as deterministic at the 
macro-level (Probability). However, the circuit's behaviour reaches its steady 
state through a self-organizing process, the equilibration of the charges 
involved (Agency). 

Static Electricity 

From the standpoint of the scientifically accepted explanation, elementary 
electrostatics involves an underlying mechanism (Mechanism dimension) of 
electrons, electron displacement, repulsion of like charges, attraction of 
different charges, and so on. This mechanism implicates interactirle catrsality 
and also re-entrant causality through the process of reaching equilibrium 
(Interaction Pattern). 

We investigated how 96 fourth graders structured their initial explanations of 
static electricity phenomena by scoring their journal explanations in response 
to a demonstration where a balloon was rubbed against a piece of wool and 
then was held near other objects (bits of paper, someone's hair, and another 
balloon that had also been rubbed by wool). Protocols were scored for the 
level of Mechanism and the Interaction pattern that they represented. Two 
raters scored the protocols and inter-rater reliability was assessed using a 
Pearson Product Moment Correlation (r = .97). 

Students' explanations tended to take very simple and efficient forms, for 
example: 'Electricity pulls your hair up' [Subject #15]. 'I think it happened 
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because of the static electricity coming from the wool' [Subject #28]. 'I think 
it happened because the electricity from the wool gave it to the balloon' 
[Subject #2]. I think it happened because it had a static reaction to the 
electricity on the balloon' [Subject #34]. 'When you rub the cloth to  the 
balloon, something happens to the balloon to make it stick' [Subject #4]. 

Such responses plainly involve token  causes (Mechanism) and simple linear 
causality (Interaction Pattern). Once in a while, students made comments that 
referred to interactive causality, for instance, 'There is an attraction between 
the wall and the balloon. Something about the wall and something about the 
balloon have been changed and it makes them attract' [Subject #82]. The 
relational causal explanations that students offered were not necessarily 
scientifically accurate. For example, one student described air pressure as 
'pushing' the balloon to the wall while the wall 'sucks' the balloon towards it 
using 'static cling' [Subject #25]. However, even though the student has not 
learned the information relevant to  the scientifically accepted explanation, he 
does hold a causal form that will fit the information rather than distort it. 

Density 

Density and the related phenomena of floating and sinking are matters we 
encounter in everyday life and are common parts of elementary science 
curricula. However, they pose considerable challenges to learners. The 
majority of students hold undifferentiated weight and density conceptions 
(Smith, Carey, & Wiser, 1985; Smith, Maclin, Grosslight, & Davis, 1997; 
Smith, Snir, & Grosslight, 1992). Children's earliest notion of density is 'heavy 
for size,' a concept which resides within their concept of weight (as in 'a heavy 
telephone') (Smith e t  al., 1985). Smith and colleagues (1985) found that in the 
case of density, students tend to focus on one feature of an object (either 
weight, size, or shape), with one often having more salience for them than the 
other. Students also often attend to only one feature of a kind of material (a 
liquid is thin, thick, or loose). They argue that until children realize that the 
heaviness of the kind of material is a property of that material, they cannot be 
said to have distinguished the concepts of weight and density. Yet, the salience 
of the surface features (felt weight) attracts students' attention, making it 
unlikely that they will look beyond it to infer the existence of density. 

This limited focus is also found when students begin to think about sinking and 
floating. Typically, students focus only on the object that they are testing to  
see if it sinks or floats (Kohn, 1993). In other words, they do not focus 
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relationally when attempting to describe the cause of sinking and floating. 
Raghavan, Sartoris, and Glaser (1998) found that prior to instruction only 2 
students of 36 revealed some understanding of the significance of relative 
density. Most of the students in their study (28 of 36) focused on properties 
of helium or air to explain why a helium balloon rises. 

The present analysis of complex causality helps in systematizing and 
understanding these shortfalls. Along the dimensions of co~nplex causality, 
density and its role in sinking and floating is challenging both in terms of 
Mechanism and Interaction Pattern. On  the dimension of Mechanism, density 
is an intensive quantity-its existence must be inferred by holding volume or 
mass constant and assessing the implications of the other variable (Inhelder & 
Piaget, 1958) and this gives students difficulty (e.g., Bliss, 1995; Rowel1 & 
Dawson, 1977). In explaining sinking and floating, differences in mass per 
unit volume, and so forth, density plays the role of an utzderlying mechanism 
that is not part of the surface situation. Everyday experience does not 
necessarily provide opportunities to hold volume or mass constant to make the 
existence of density obvious. Weight, on the other hand can immediately be 
perceived or felt as one lifts an object. 

Considering the causes of differences in density in terms of atomic theory rather 
than in terms of the relationship between mass and volume is no less complex. 
The atomic mass, the atomic bonds, the spacing and arrangement of atoms and 
molecules, and so forth, are entities that are not part of the surface features 
available to students. Students need to accept the idea that there are atoms and 
that they have mass, without ever being able to witness it directly. This engages 
students in the highest levels of complexity along the Mechanism dimension. 

In terms of Interaction Pattern, understanding density involves relational 
causality. Students need to reason about the relationship between mass and 
volume and understand that if the relationship between them changes, the 
density changes. Similarly, in understanding the role of density in sinking and 
floating, students need to reason about the relationship between the densities 
involved. This relational type of causality involves recognizing that an effect 
is caused by the relationship, often one of balance or imbalance, between 
elements of a system. Neither element is the cause by itself. Thinking about 
relational causality requires a departure from linear, unidirectional forms of 
causality where one entity acts as a causal agent on another affecting an 
outcome in one direction only-in a domino-like pattern (Grotzer, 1993; 
Perkins & Grotzer, 2000). 
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Ecosystems 

Many teachers consider ecosystems concepts to be important, and relatively 
easy for students to learn (Barman & Mayer, 1994). The wealth of 
investigations examining students' misconceptions about ecosystems 
contradicts this belief. A full scientific account of ecosystems is a formidable 
construct, involving underlying mechanisms such as bacteria (Mechanism 
dimension), interactive causality and re-entrant causality (Interaction Pattern), 
chancy and chaotic systems (Probability), and ca~tsal webs, trigger effects, and 
self-organizing systems (Agency). However, students' _typical accounts capture 
little of this complexity. 

Research shows that when reasoning about effects in ecosystems, students 
usually miss the connectedness within the system and the implicit complex 
causal relationships (e.g., Griffiths & Grant, 1985; Grotzer & Basca, 2003; 
Webb & Boltt, 1990). For instance, Barmen, Griffiths, and Okabukola (1995) 
found that senior high school students believed that a change in one population 
will not be passed along several different pathways of a food web, and that a 
change in one population will only affect another population if the two have a 
predator-prey relationship. Previously, Griffiths and Grant (1985) found 
similar beliefs in a study of grade 10 biology students. Grotzer (1989, 1993) 
found that the tendency to ignore indirect effects was, in part, age-related. 
Seven-year-olds were less likely than 9- and I1-year-olds to  detect indirect 
effects on their own. However, instances where indirect effects were ignored 
or explicitly rejected occurred with fairly high frequencies across the age 
groups. 

Students do not easily recognize interactive causal relations without 
scaffolding. Most students break these patterns apart and miss their reciprocal 
aspects. According to Green (1997), although many systems in our world 
(economic, human relationships) involve complex chains of cause and effect 
encompassing two-way causal processes, people tend to construct one-way 
linear chains when explaining them. He found that when uncued, only 16% 
of 20-year-olds gave two-way causal accounts of predator-prey relationships. 
Further, only 9.5% used two-way causal models when explaining a three-level 
problem. Barman and Mayer (1994) found that students defined a food web 
as a more realistic representation of feeding relationships; however, when 
probed as to  what would happen to an ecosystem if the fox population were 
to be reduced or the rabbit population doubled, the students revealed a lack of 
understanding of the mutual relationships within a food web. The students 
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tended to believe that a change in the size of a prey population has no influence 
on its predator's population, and that a change in the population of a first- 
order consumer will not affect one or more producer populations. 

Such shortfalls are particularly notable because students in principle have 
enough basic familiarity with foxes, rabbits, and their everyday actions to 
construct a more complex story. There are no esoteric entities like electrons or 
viruses in play. Students' everyday knowledge creates ample opportunities for 
putting their simpler models at risk through common-sense reasoning that 
constructs disconfirmatory instances. However, students fail to think in terms 
of populations and see the systemic implications of what they know. 

Natural Selection 

Ohlsson (n.d.) offers an interesting set of findings about initial conceptions of 
evolution. He conducted interviews of a number of college students, collecting 
their explanations for adaptive changes in species over time. Responses 
recounting Darwinian natural selection were rare. Ohlsson classified the 
responses into seven categories as follows: enz~ironmentalism, traits develop 
when the circumstances present a demand or opportunity; survival, the 
relevant trait and its opposite are in the population, and members without the 
trait die; creationism, God creates the trait; training, organisms learn or adapt 
during their lifetime and pass on traits (Lamarckian); mutationism, the trait 
suddenly appears in small numbers and spreads in the population; mentalisnz, 
animals decide, discover, learn, or are taught new behaviours or how to give 
themselves new traits; crossbreeding, traits arise via interbreeding between 
species; dissemination, organisms with the trait gradually increase in numbers 
generation by generation, displacing those lacking it. 

We analyzed these categories from the perspective of the four dimensions. 
Most responses were composed of commonplace elements (Mechanism 
dimension), accounting for evolution by piecing together phenomena at the 
same level as adaptations themselves, rather than at an underlying level, as 
with genetics. It should be noted that Darwin's own theory of natural 
selection was a theory constructed of commonplace elements such as 
inheritance of traits (well-known from selective breeding), albeit one much 
more complete than the students offered. The explanations were mostly 
simple linear (Interaction Pattern), as with environmentalism, where the 
circumstances somehow cause the trait to  develop. Concerning the Probability 
dimension, most accounts were deterministic: the adaptation would follow 
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inevitably. Concerning the Agency dimension, there was some recognition of 
aggregate effects, adaptations dominating in a population over time, but also 
sometimes central agents with immediate influence, again as with 
environmentalism where the environment causes the adaptation. 

It's notable that, as with the ecosystems topic, students surely often had enough 
knowledge to challenge their models. Their responses show failure to examine 
their models critically for gaps in the causal story. Students' survival, 
crossbreeding, and dissemination theories assume that the relevant trait 
conveniently appears or is already in the population. The e?z~liro?znze?ztalism 
theory assumes that somehow the environment draws out the adaptation 
without explaining how. The training theory takes it for granted that the 
acquired traits are passed along without explaining how. 

In summary, analyzing the students' thinking through the dimensions of 
complex causality helps to delineate the kinds of learning challenges particular 
students or groups of students are likely to face and does so with greater 
specificity than other qualitative lenses that focus on single aspects of 
dimensions (such as a tendency towards linear causal reasoning). The 
framework provides more than a sense of what is problematic with students' 
reasoning in a given instance; it offers a sense of what models would offer a 
better fit. 

EVIDENCE FOR THE DIMENSIONS OF COMPLEX CAUSALITY FROM 
INTERVENTIONS 

The present theory predicts that students tend toward very simple causal 
explanations, as gauged by the four dimensions. While the studies reviewed 
above support that prediction, one can still question whether the results reflect 
shortfalls in learners' repertoires of causal models or something else. A 
distinction can be drawn between instances of causation and the rules of 
causality (Murayama, 1994; Pazzani, 1991). Causation refers to  explanations 
of cause and effect in specific instances-the particular mechanism in play and 
so forth-while causality refers to the rules of cause and effect relationships. A 
challenge to the hypothesis set forth is that perhaps the former is the sole 
source of students' difficulties. That is, perhaps the strangeness or intricacy of 
particular topics such as electricity or evolution somehow masks or suppresses 
models that are part of students' repertoire, or are easily enough constructed 
by students when the content is less intricate and more familiar. 
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Teaching experiments provide a direct way to approach this puzzle. We have 
taught students more complex models in the context of learning science 
concepts, examining whether this expands their understanding, in contrast to 
teaching only the science concepts. Generally speaking, the studies we have 
conducted contrast control conditions, featuring what would be considered 
best practices in science instruction, with treatment conditions that add explicit 
attention to styles of causal modelling. 

Great effort was invested in 'honest' control conditions that supported learning 
for understanding, without foregrounding complex causality. The control 
group instruction included Socratic discussion, computer simulations, 
grappling with discrepant events, and so forth. All of the students engaged in 
constructing models (on white boards, in journals, etc.), sharing and discussing 
those models, and critiquing the models in terms of which had the most 
explanatory power given the evidence that students were discovering. The 
teachers and researchers scaffolded these discussions to help students focus on 
bringing evidence and counter-evidence to bear on the process of critiquing the 
models. Sandoval (2003) recently suggested that public classroom discourse 
with teacher guidance of this type might be necessary to help students see what 
claims are warranted by the data. The instructional design assumed that 
students' models would evolve and change over the course of repeated 
explorations. However, the control instruction never focused directly on the 
causal complexities of the science concepts in question. 

We turn now to treatment conditions. The interventions never involved merely 
providing students with generic accounts of complex modelling styles. Rather, 
we introduced what we call RECAST activities or 'activities designed to REveal 
the underlying CAusal STructure.' We also introduced discussions about the 
nature of causality-the specific causal rules and patterns in play-in the 
context of learning particular science topics. All this was subject to the same 
modelling, discussion, and critique for explanatory power as other ideas and 
simpler models that students advanced. In other words, the RECAST activities 
and discussion about causal structure were the added ingredients that marked 
the contrast between our treatment conditions and the generally good teaching 
and learning for understanding in the control conditions. 

The full specifics for each topic are described in topic-focused sections that 
follow. However, to give a feel for RECAST activities, we describe one 
employed in the intervention on density to be detailed later. In exploring the 
role of density in sinking and floating, students see a demonstration that directs 
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their attention from a linear causal interpretation to a relational causal 
interpretation. They are first shown a big piece of candle that sinks when it is 
placed in a clear liquid, and a small piece of candle that floats when it is placed 
in a clear liquid. This outcome fits with most students' expectations. Then the 
pieces of candle are switched. To the students' surprise, the big piece of candle 
floats and the small piece of candle sinks. The outcome pushes them beyond 
a linear, feature-based causal conception of 'the weight makes it sink' or 'the 
density makes it sink' to a relational causal conception. Students begin to 
focus on the liquid and the object and realize that the causal pattern is a 
relationship between greater and lesser density of objects and liquid (Liem, 
1981). These causally-focused activities reveal, through results that are 
discrepant with students' expectations, that the structure of the causality 
involved is different than students anticipate and offer insights into the nature 
of that causality. Such activities were the basis of explicit discussion about the 
nature of causality in the causal treatment group described below. 

EVIDENCE FROM AN INTERVENTION CONCERNING ELECTRICAL 
CIRCUITS 

We discussed earlier how students learning about electrical circuits become 
entrenched in a linear causal pattern (Interaction Pattern): the electrons begin 
at the battery and fill up the circuit. Or sometimes after further instruction, 
they develop another model also resistant to change, a cyclic sequential 
pattern: the empty circuit fills sequentially and the electrons are then recycled. 
A better scientific account invokes a cyclic simultaneous causal pattern in 
which causes and effects co-occur, the electrons moving in the circuit like a 
bicycle chain (Shipstone, 1985). In terms of the Interaction Pattern dimension, 
this involves re-entrant or cyclic causality that occurs simultaneously rather 
than sequentially and necessitates attention to the whole system at once. At a 
slightly more complex level, an electrical potential model, it can be said to 
involve relational causality, electrons repelling and being repelled when 
electrical current is flowing in a steady state, a differential in the concentration 
of electrons that results in flow; and it can also be expressed through 
constraint-based causality, in the form of Ohm's law. The scientists' account 
also involves an elaborated underlying mechanism (Mechanism dimension). 
Scientists would view the circuit's behaviour as deterministic at the macro-level 
(Probability). However, regarding Agency, the circuit's behaviour reaches its 
steady state through a self-organizing process, the equilibration of the charges 
involved (Agency). 
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We designed an intervention unit using RECAST activities and discussion to 
shift students toward a cyclic simultaneous model of electrical circuits. Given 
the age of the subjects, the study did not attempt to move students beyond the 
cyclic simultaneous model to an electrical potential model, as we might have 
done with middle school students. Instead, it tested whether the intervention 
could move students beyond the resistant cyclic sequential model. 

Method 

Subjects 

The subjects were students in three 4th grade classes (n=72). The students 
were from two elementary schools in the Boston area with an ethnically diverse 
and mixed SES population. As discussed later, the three classes proved to be 
equivalent in their pre-intervention performance on the assessments employed. 

Procedure 

All of the students participated in a three-week (two classes per week) mini- 
unit on static electricity followed by the Science and Technology for Children 
'Electric Circuits' unit (NSRC, 1991), for approximately eight weeks (two 
classes per week). One class (C&D for causal plus discussion) participated in 
RECAST activities and explicit scaffolded discussions of the underlying causal 
modelling styles. The second class (CAU for causal only) participated in 
RECAST activities, and discussed the causal models they suggested, but 
without the explicit scaffolding around causal modelling styles. The third 
class (CTL for control) participated in the static and electricity units without 
the RECAST activities, discussing instead the activities they did do and their 
ideas about models for what was going on, but without scaffolding regarding 
causal modelling styles. More details on the instructional conditions are given 
below. The overall length of the units and total classroom time were the same 
for all conditions. All students were pre- and post-tested and the same nine 
students from each class (n=27) were pre- and post-interviewed in depth using 
questions to reveal the causal models that they used for analyzing electricity 
problems. 

Pretest and Post Assessment 

Students took a researcher-designed, group-administered, pre- and post- 
inventory consisting of 14 multiple-choice and 2 essay questions. The 



inventory answers were designed to fit with the types of models (and related 
misconceptions) that students typically hold for analyzing electrical circuits 
based on research by Shipstone (1985), Slotta and Chi (1999) and others. The 
inventory asked students to reason about simple circuits, series and parallel 
circuits, and to consider the relationship between voltage, resistance, and 
current. Nine students from each class (balanced to represent low- middle- and 
high-achievers) were interviewed beginning with open-ended questions and 
progressing to  more targeted and scaffolded questions to see whether students 
would choose the scientifically accepted model if it was offered as a choice. 

Intervention 

Each class was taught by the classroom teacher and two researchers (who were 
former teachers, one a retired fourth grade teacher with a strong science 
background). All three classes used an inquiry-based, constructivist approach 
for both the static and electric circuits units. Opportunities were infused for 
all students to model and discuss what they thought was going on causally at 
different points in their experimentation and to revise their ideas as they 
discovered new information that contradicted their earlier models. Students 
kept journals and tested and discussed their models in light of the evidence that 
they found. 

The mini-unit on static electricity preceded the unit on electrical circuits, to 
introduce the particle model of electrons and protons and attracting and 
repelling, and to give students a basis for understanding the behaviour of 
electrons in the circuit. It was based partly upon materials developed by AIMS 
(AIMS Education Foundation, 1991) for the intermediate grades and partly on 
activities developed by the researchers. 

Then students participated in the Science and Technology for Children unit, 
'Electric Circuits' (NSRC, 1991). It was modified in the following ways and 
as detailed in Appendix A. For the causal models (CAU) and causal models 
plus discussion (CPcD) groups, RECAST activities were infused into the NSRC 
unit, using role-playing and physical models such as marbles and tubing. 
Students in both groups engaged in these activities to  help them consider the 
implications of different causal explanations for why electrons move in a 
circuit. Students in the CAU group discussed the activities and the models for 
electrical circuits that the activities suggested, but without scaffolding to  focus 
on modelling styles. In contrast, students in the C&D group engaged in 
scaffolded conversations that foregrounded causal modelling styles. These 

students explicitly discussed the idea that the circuit, after a transient delay, 
operates according to cyclic simultaneous causality, with flow sustained by the 
repelling of electrons (each electron playing the role of both cause and effect) 
along the circuit. They were invited to contrast this with cyclic sequential 
causality and linear causality. For instance, here is an excerpt of class 
discussion: 

Let's compare how cause and effect works in these two different kinds of 
cyclic models. In the cyclic sequential one, what makes the electrons 
move? 
They want to get out of the battery because of all the electrons so they go 
onto the wire. 
Okay, and then what happens? 
They go along the wire till they get to the bulb and that makes the bulb 
light up. 
Why do the electrons move in the cyclic simultaneous model? 
The electrons push the one in front but at the same time they are pushed 
by the one before them. So everything moves at the same time. 
Yes, in a sense, each electron repelling is the cause of the next one but it 
is the effect of the one behind it. It's both a cause and an effect at the 
same time. What you get is the whole thing turning like the chain on a 
bicycle. What causes the bulb to  light? 
When the electrons start to flow. 

They also discussed what was difficult about learning each type of causality. 
For instance, one student commented about cyclic simultaneous causality, 'It's 
kind of hard to think about. The way we have to learn it is like what's making 
what happen so you think of it in a line, so then it's really hard to  think that 
it's happening all at once' [Subject #27]. The amount of discussion that each 
group (CTL, CAU, C&D) engaged in was the same, but the focus differed. As 
noted earlier, the classroom time and overall length of the units was the same 
for each intervention condition. 

Scoring 

Interview Data 

The interview data from each subject were scored globally for model type 
based on a scoring scheme developed from the extant research (e.g., Shipstone, 
1984, 1985) and to characterize the implicit causal assumptions. The models 
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aimed to capture the 'why' behind current flow, rather than focus on 'how' as 
is prevalent in the available curriculum materials. The first few models overlap 
directly with those of Shipstone (1984, 1985) in that they begin where the 
students begin (with various forms of linear models). We did not introduce 
these to students; they brought these conceptions with them. Scores were 
attached to each model type, reflecting the level of complexity that it involved. 
When students had aspects of more than one model type, the scores were 
averaged. 

No causal model (Level 0) was assigned when students gave background 
conditions, peripheral information or configurations only or no explanation. 
Simple Linear Causal Models (Level 1)  were assigned to  'token causes,' linear 
consumer source models characterized by a single wire running from the 
battery to  the bulb where 'stuff' from the battery travels to  the bulb and is 
consumed (i.e., 'The battery gives energy to the bulb') or passes through the 
bulb, but stops there with no mention of the recycling of electrons. Double 
Linear Causal Models (Level 1.5) were assigned to linear models where a 
second wire passively contributes to the lighting (i.e., 'The other wire has to be 
there or it won't work'); or with active assistance or additive aspects where a 
second wire actively contributes to  the lighting (makes it stronger, fuels it, etc.) 
(i.e., 'You need two wires to get enough power to make it light'); and to 
'clashing currents' or attraction models characterized by electricity traveling up 
from both terminals and attracting or clashing to fuel the bulb (i.e., 'The 
electrons travel up one side and the protons travel up the other and they clash 
together to make it light'). Cyclic Sequential Causal Models (Level 2 )  were 
assigned to models characterized by electrons traveling around the circuit in a 
sequential manner where they start filling the circuit at the battery and travel 
to  the bulb (i.e., 'The electricity goes along the wire in a circle and when it gets 
to the bulb, the bulb lights up. Then it keeps going back into the battery and 
goes around again.'). Cyclic Simultaneous Causal Models (Level 2.5) were 
assigned to models characterized by electricity/electrons already existing in the 
circuit and simultaneously repelling each other as more electrons are repelled 
onto the wire by the battery (i.e., 'The electrons are pushed by the electrons 
behind it and that makes them all move at once and makes the bulb light'). 

The interviews were transcribed and then scored by two independent raters. A 
Pearson Product Moment Correlation was conducted and initial agreement 
was assessed at (r = .92). The differences were discussed and resolved until 
there was 100% agreement. 

Dimensions of Causal Understanding 

Whole Class Electricity Inventory 

Students were assigned a general score on the inventory. Multiple-choice 
questions were scored for the scientifically accepted explanation (for instance, 
in a series circuit, both bulbs light at the same time). A rubric was designed 
for each of the essay questions based on the underlying causal model they 
revealed. For instance, one question asked, 'If you increased the length of the 
wires in a pictured circuit, would it take longer or approximately the same 
amount of time for the bulb to light and why,' revealing either a sequential 
notion of electron flow or a simultaneous one. Sequential models were typified 
by the idea that the electricity or electrons have to reach the bulb, while 
simultaneous models were typified by the idea that the electrons are already 
along the wire and that the flow of electrons was responsible for the lighting 
of the bulb rather than the electrons reaching the bulb. (The possibility existed 
that some students would reason that there might be a transient delay even 
though the process is nearly a simultaneous one. This is a rather sophisticated 
line of reasoning, but one that better fits the scientific explanation than a 
purely simultaneous model.) 

The following kinds of statements were scored as indicating a sequential 
model: 'It would take longer because the electrons need to flow through the 
wires to get to  the bulb;' or 'It won't take longer because the electricity makes 
up the difference by traveling faster.' The following kinds of statements typified 
simultaneous models: 'It wouldn't take longer because the wire is made up of 
atoms and they get pushed as others get pushed out of the negative side of the 
battery and get pulled toward the protons on the positive side;' or 'It wouldn't 
take longer because there are atoms along the wire and as soon as you hook it 
up, it begins to flow. The flow makes it light up.' Other scoring categories 
included mixed models, other models, unclear, or unscoreable. Two scorers 
each scored 100% of the data. Initial agreement was assessed using a Pearson 
Product Moment Correlation (r_= .87) on Essay 1 and (r_= .91) on Essay 2. 
Differences were discussed until 100% agreement was reached. 

Results 

How does students' understanding compare from pre- to post-measures 
depending upon intervention group? The interview data reveal whether 
students achieved a deep understanding of the cyclic simultaneous model and 
could apply it to analyzing simple circuits. A one-way analysis of variance 
(ANOVA) on students' pre-interview scores by group confirmed that there 
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were no significant starting differences between the groups (F (2, 26) = .15, p 
= .86). However, the post-interview scores showed a significant main effect of 
intervention condition (F (2, 26) = 10.11, p = .0007). A Tukey Kramer HSD 
multiple comparisons t-test revealed that the C&D students held significantly 
different models on the post-interview than the CTL (Abs(Dif)-LSD = .34, p < 
.05) and CAU students (Abs(Dif)-LSD = .06, p < .05). No significant 
differences were found between the CTL and the CAU groups. 

Table 2 shows the means and standard deviations for each group. While the 
numbers do not appear to be dramatically different, they signal deep 
differences in understanding. Students who hold a cyclic sequential model 
would receive a score of 2.0 and those students who hold a cyclic simultaneous 
model would receive a score of 2.5. Students with a cyclic sequential model 
are likely to  focus on local effects in a simple circuit, to reason that the circuit 
is empty to begin with, and to make erroneous predictions about parallel and 
series circuits, Ohm's Law and so forth. Students with a cyclic simultaneous 
model reason at a systems level and make correct predictions about parallel 
and series circuits, Ohm's Law and so forth. Figure 1 shows that all but one 
of the students in the CKrD group held cyclic simultaneous models on the post- 
interview. Notice the smaller standard deviation in the C&D group, suggesting 
that there is less variation in student performance when all students are given 
access to  the underlying causality. 

Table 2 
Means and Standard Deviations for Post interviews by Intervention Condition 

intervention condition Number Mean Standard deviation Standard error of mean 

1 = Control 9 1.67 .37 

2 = CAU 9 1.94 .5 1 

3 = C&D 9 2.44 .11 

Dimensions of Ca~sa l  Understanding 

Background Condition 
Simple Linear 

IB Double Linear 
PI Cyclic Sequential 

CTL CAU C&D 

Figure 1. Number of students using each model type on post-interview by intervention 
condition (n= 27). 

Note that learners were not just giving back what they were taught. The 
assessments asked students to apply what they had learned to situations not 
directly addressed in the instruction, novel circuits, and probed for typical 
misunderstandings not directly addressed in the instruction. 

Related to the finding of less variance in the C&D group, it appears that the 
C&D intervention benefited all of the students in the group regardless of 
achievement level. Regression analyses plotting pre-interview scores against 
achievement level showed that achievement level was a significant predictor of 
students' pre-interview scores (F (2 ,27)  = 6.23, p = .007), with the lowest level 
students doing the least well, as would be expected. However, a regression 
plotting group and achievement level against post-interview scores showed that 
intervention group (F (2, 27) = 11.2, p = .0004) was a significant predictor of 
post-interview performance, but that achievement level was not (F (2, 27) = 
2.3, p = .1238). In the C&D group, nearly all of the low achievers reached the 
most sophisticated model. 
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The inventory data gave a measure of whether students applied the models that 
they learned to reasoning about the circuit to overcome typical misconceptions, 
such as the idea that the circuit is initially empty or that current is not 
conserved. A one-way analysis of variance (ANOVA) by intervention 
condition on the pre-inventory scores confirmed that there were no significant 
starting differences between the groups (F (2, 63) = .0356, p = .9651). Post- 
inventory scores revealed a significant main effect of intervention condition (F 
(2, 65) = 5.14, g = .008). C&D Students did significantly better than the CAU 
(Abs(Dif)-LSD = .11, g < .05) and CTL students (Abs(Dif)-LSD = .38, g < .05) 
as revealed by a Tukeys HSD. The C&D group outperformed the others by 
nearly one standard deviation. There were no significant differences between 
the CAU group and the CTL group. Students in the C&D group gained on 
average 5.6 points, one standard deviation above the CTL group at 2.9 points 
and close to  one standard deviation above the CAU group at 3.3 points. 

Table 3 
Inventory Gain Scores by Intervention Condition 

Intervention condition Number Mean Standard deviation Standard error of mean 

1 = Control 2 1 2.88 1.81 
2 = CAU 22 3.34 2.70 
3 = C&D 23 5.59 2.41 

The overall results suggest that students who experienced RECAST activities 
and explicit causal discussion made the  greatest gains i n  the  type of  model  that  
they used to explain simple circuits and in overcoming typical misconceptions. 
It appears that the pattern of causal interactions was complex enough and 
counterintuitive enough to require explicit discussion of the RECAST activities 
for them to have impact. 

EVIDENCE FROM AN INTERVENTION CONCERNING DENSITY 

Earlier we discussed the complex causality involved in the concepts of density 
and sinking and floating. To summarize, under Mechanism, density is not a 
directly observable property and explanations of density in terms of atomic 

theory are even more removed from experience. Under Interaction Pattern, 
density depends on the interaction of weight and volume, whereas young 
learners tend to focus on one variable at a time. We designed an experiment 
using RECAST activities and causal discussion to introduce students to the 
underlying causal structure of density. 

Method 

Subjects 

The subjects were eighth graders (n=91) from a middle school in a 
predominantly middle-class suburban community outside of Boston. The 
students were from four science classes taught by the same science teacher. The 
students had science class five days per week for approximately 4.5 minutes 
each day. 

Procedure 

All of the classes began the year with a unit on the nature of matter, after the 
teachers and researchers agreed that it was a useful prerequisite for understanding 
density. A unit on density and the role of density in sinking and floating followed. 
Prior to the Density Unit, we tested students' understanding with a pre-inventory 
of 10 assessment questions (6 open-ended assessment questions designed to elicit 
students' models of how causality behaves in density-related phenomena and 4 
multiple choice questions focused on key misconceptions.). 

Two classes were control classes (CTL). They were taught a unit called Basic 
Density. The unit was inquiry-based, involved a lot of modelling, Socratic 
discussion, and use of computer simulations. Two other classes participated in 
a causal activity plus discussion (C&D) intervention and were taught a unit 
called Causal Density. The Causal Density was essentially the same as the 
Basic Density unit except that it included RECAST activities and causal 
discussion while Basic Density did not. The units were designed to be the same 
length so when C&D classes had RECAST activities and causal discussion, the 
CTL classes participated in similar activities (without the causal focus) that are 
typically a part of density units. For instance, when C&D classes 
experimented with making soda cans sink or float by adjusting the density of 
the liquid that the cans were floating in, CTL classes created an object that 
would sink, float, or suspend in water by analyzing its density relative to water 
and figuring out what materials to  add to it. 
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Following the density unit, students took a post-inventory of 10 questions as 
above. We also interviewed three students from each class (n = 12) (balanced 
groups chosen by the teachers to represent high, medium, and low achievers), 
collected relevant work samples throughout the unit, and videotaped 
classroom discussion for later analysis. 

Pre and Post Assessment 

Students were pre- and post-tested with an Open-Ended Inventory of 10 
questions designed to assess understanding of density and its role in sinking 
and floating. Students had opportunities to reveal that they understood the 
relationship between mass and volume, the microscopic material causes of 
density, that as temperature and pressure change density is dynamic, and the 
relational causality involved in both the mass/volume relationship and the role 
of density differentials in sinking and floating. For instance, one question 
asked students to explain differences in felt weight between two objects of the 
same volume. Another question asked students to show the possible outcomes 
when an object is dropped into a liquid to see if it will float and to explain 
each. They were also asked to answer questions that students typically have 
misconceptions about, such as what happens to the density when you cut an 
object in half (Smith, Grosslight, Davis, Macklin, Unger, Sniq & Raz, 1994). 

Intervention 

The Basic Density and Causal Density Units each contained 15 lessons 
designed to teach about density and the role of density in sinking and floating. 
The units took five weeks to teach. Both units included work with 
Archimedes' Laboratory, a computer simulation program by Snir, Smith, 
Grosslight, Unger, and Raz (1989) designed to teach density as a 'dots per box7 
model. The lesson sequence for the units, specifying what was taught to each 
group in each lesson can be found in Appendix B. All four classes were taught 
by the same teacher and by a researcher, who was a former science teacher. 

The Causal Density Unit included RECAST activities and discussion aimed at 
helping students achieve the following understanding goals about the nature of 
causality as it relates to the causes of density and the role of density in sinking 
and floating. One goal focused on the causal mechanism for differences in 
density, in particular, that density as a causal mechanism is non-obvious, and 
the causes of differences in density are non-obvious because they occur at the 
microscopic level (with the exception of some cases of mixed densities). Part 

Dimensions of Causal Understanding 

of this was some sense of what causes differences in density at the microscopic 
level (such as atomic mass, atomic bonds, etc.). We also wanted students to 
understand that density is dynamic because some of the causes of density are 
dynamic. While atomic mass is constant, the bonds between atoms and 
molecules are affected by variables such as temperature and pressure. 
Unfortunately, middle school textbooks often state 'density cannot change,' 
fostering the notion that we assign a number to the density of an element 
'under standard conditions' and that the number doesn't change. The two 
ideas tend to be confused by both students and textbook writers, leaving 
students with the belief that density is static and making it difficult for them to 
understand a vast range of everyday phenomena. 

The second understanding goal concerned the relational interaction patterns 
that characterize density as mass per unit volume a d  the role of density in 
sinking and floating. Typically, people assume a linear causal interaction 
pattern and say things like 'dense objects sink' or 'heavy objects sink.' 
However, the scientifically accurate model is a relational causal interaction 
pattern. Whether something sinks or floats depends on what it is sinking or 
floating in and the relationship of the densities. 

Scoring 

A rubric was designed to score each answer by the level of scientific correctness 
and the complex causality it represented. For instance, one question asked 
students to show the possible outcomes when an object is dropped into a liquid 
to see if it will float and to explain each. The following scores were assigned. 
No response was scored as Level 0. Repeating information given in the 
problem or giving examples of things that sink or float was scored as Level 1. 
Weight attributions, token uses of density, or merely stating that hollow things 
float and solids sink were scored as Level 2. Attributing sinking or floating to 
material kind or to air particles inside a material were scored as Level 3. A 
focus on the density or crowdedness of the material or on the density or 
crowdedness of the liquid was scored as a Level 4 (including mixed density 
where the density of air plus the density of the material gives a total density). 
A focus on the density or crowdedness of the material in relation to the density 
or crowdedness of the liquid was scored at Level 5. 

One scorer scored 100% and a second scorer scored 25% of the data and inter- 
rater reliability was assessed using a Pearson Product Moment Correlation (6 = 
.85). The scoring rubric was adjusted and clarified to account for categories 
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of differences (without discussion of individual cases) resulting in an improved 
Pearson Product Moment Correlation (r_= .91). Differences were discussed 
until 100% agreement was reached. 

Results 

A one-way analysis of variance (ANOVA) on students' pre-interview scores by 
group confirmed that there were no significant starting differences between the 
groups (t (89) = -1.72, p = .09). However, given that numbers were 
approaching significance, pre-test scores were entered as a covariate in the 
regression analysis below. 

Both groups of students showed significant improvement on the post-test as the 
result of instruction (across groups: (86) = -8.69, p <.0001; within groups: 
CTI, = t (45) = -4.80, p c.0001 and C&D = t (40) = -7.98, p < .001). This is 
not surprising because both units were designed around best practices. A 
multiple regression model plotting intervention condition and pre-test scores 
against pre- to  post-test gains yielded an R2 = .33 and the Effect Test showed 
significant main effects of intervention condition (F (1, 87) = 12.73, p <.0006) 
and pre-test score (E (1, 87) = 34.99, p < .0001). The causal students 
outperformed the control students with respective least squares means of 11.23 
and 5.56 (SJ = 8.5). 

From a developmental perspective, one might argue that students with lower 
starting scores are less ready to learn the more advanced models. However, the 
analysis also revealed a negative correlation between pre-test scores and gain 
scores (r = -.48) with lower pre-test scores correlating with higher gain scores. 
(See the prediction formula in Figure 2.) This makes sense in that there is a 
ceiling on how much one can gain, so those who start lower have more to  gain. 
It also fits with our hypothesis that there are certain conceptual leaps that are 
hard for students to make, for instance moving from a linear to a relational 
model. Those who start lower can gain a greater amount before having to 
surmount the hurdle of those conceptual challenges. 

For another way of looking at the data, we calculated the percentage of 
students in each intervention condition who ended up with a relational causal 
model. This measure focuses directly on the hurdle of leaving a linear causal 
model behind completely and adopting a fully relational model. Three 
questions on the assessment directly assessed whether students structured their 
explanation with a relational causal model. Students were assigned one point 

for each relational model that they used. A multiple regression model plotting 
intervention condition and pre-test relational model use against pre- to post- 
test gains in relational model use yielded an R2 = .35 and the Effect Test 
showed significant main effects of intervention condition (F (1, 87) = 7.62, p < 
.0071) and pre-test score (I; (1, 87) = 40.75, p c .0001). The causal students 
outperformed the control students with respective least squares means of 1.31 
and .81 (B = .99). Figure 3 illustrates the percentage of students in each 
condition who shifted from using linear to relational causal models on their 
pre- to  post-test. Here 'use of relational causal model' was defined as 
employing relational causality on at  least two of the three questions. 

Inlementzon 
match Condrtzon 

Intercept = 19.62 ' when Control 
- 0.55 x total pretert 

5.66 when Causai 

Figure 2. .Prediction formula detailing parameter estimates (intervention condition and 
interview version) to estimate density gain scores. 

Percentage of 
Students in 
Each Group 

Control- Control- Causal- Causal 
Pretest Post-test Pretest Post-test 
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Model Type 

Figure 3. Percentage of students using each model type on pre- and post-test by 
intervention condition (n = 91). 



The density results suggest that students significantly benefited from the 
infusion of RECAST activities and causal discussion into their science unit. 
However, the results are not as dramatic as in the electricity research: students 
in the control classes also saw significant gains and 61 % of them (as compared 
to 86% of the causal group) used relational causal reasoning on the post-test. 
It appears that the pattern of relational causality may be less counterintuitive 
to students than those in electricity, some of them gleaning it from instruction 
that does not specifically focus on it. 

Most of the assessment questions that we used were real-world type questions 
that blended the different dimensions of causality, so it was not possible to 
discern which dimensions were most impacted by the interventions. However, 
we found in both studies that students felt comfortable talking about 
interaction patterns and often spontaneously mentioned them and/or 
contrasted more complex forms to simple linear reasoning. Students also 
quickly picked up on the term 'token cause' and pushed not only themselves, 
but also their peers and sometimes their teachers, for more in-depth 
explanations when they asked a question and got back what they considered a 
token cause. Whether these aspects of the dimensions are inherently most 
easily fostered or the intervention was in some way more effective addressing 
these is an open question that warrants further study. 

In summary, the foregoing studies offer support for the hypothesis that 
teaching students about more complex causal structures improves their ability 
to reason about topics for which they typically have misconceptions. This is 
corroborated by findings in our research on other topics such as ecosystems, 
pressure, and heat and temperature (e.g., Basca & Grotzer, 2001; Grotzer, 
2004; Grotzer & Basca, 2003). Across the topics studied, students in the 
causal interventions demonstrated deeper understanding and fewer 
misconceptions. They analyzed problems at a more systemic level, made 
reference to causal models, and contrasted and critiqued the relevance of 
different causal forms to specific concepts. For example, in the study of 
students' understanding of ecosystems, students in the causal interventions 
detected significantly more connectedness in the ecosystem relationships and 
demonstrated a stronger grasp of decomposition and the non-obvious 
mechanisms that cause it (Grotzer, 1993; Grotzer & Basca, 2003). In air 
pressure, students who engaged in causal discussion plus a systemically- 
focused air pressure curriculum experienced greater conceptual change 
towards relational causal models than students who engaged in only the 
systemically-focused curriculum (Basca & Grotzer, 2001). In heat and 

temperature, students in causal intervention groups made substantive gains on 
understanding the interaction patterns involved in heat and temperature 
(domino, re-entrant, and linear causal structures) (Grotzer, 2004). 

CONCLUSION 

We began with a puzzle: magic was easier to understand than science. A likely 
reason was not hard to find. The baffling accomplishments of a master 
magician, once explained and demonstrated, occupy the everyday world of 
commonsense causality. Even if a trick is complicated, each element has a 
comforting familiarity. In contrast, a scientific explanation that might even have 
fewer principal elements would often be more complicated in other senses- 
invoking an underlying mechanism; interactive, cyclic, or constraint-like 
relations among factors; probabilistic elements; and emergence of various kinds. 

Typical science instruction does little to prepare learners for this complexity. 
As noted earlier, science instruction characteristically foregrounds (1) learning 
and applying specific models (for instance, Ohm's Law for a simple standard 
circuit), and, next to that, (2) learning and applying modelling systems (for 
example, Ohm's Law for any circuit), but rarely (3) learning and reusing 
modelling styles (constraint-system models in general for instance). Unfamiliar 
and uncomfortable with complex styles of causal modelling, learners often find 
themselves baffled and frequently backslide after a little progress. 

Our tests of the complex causality framework found support from studies of 
students' initial conceptions, both prior to and after conventional instruction. 
The causal models implicit in students' explanations tend to be quite simple by 
the measure of the four dimensions of complex causality. Moreover, 
interventions designed to teach characteristically troublesome science concepts 
in a way that brought out complex causality yield considerable gains in 
students' understanding, compared with control groups receiving 'best 
practices' inquiry-oriented instruction without attention to  complex causality. 

At the beginning of this article, we asked: what makes some science concepts 
particularly hard to understand, not just requiring 'a little more instruction'? 
The following conclusions, all related to modelling styles, seem warranted. 

1. What is not so challenging is complexity of scientific theories in the sense of 
daunting intricacy-at least not scientific theories usually found in the K-12 
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curriculum. Compare, for example, the intricacy of a foreign language with 
its many rules, many exceptions, and huge vocabulary with the intricacy of 
most scientific theories. The foreign language is far more elaborate. 

One source of difficulty lies in concept-specific contrary intuitions such as 
those identified by diSessa (1993). We certainly acknowledge concept- 
specific intuitions are a problem. However, we do suggest that learners 
are in a better position to challenge such intuitions with a good sense of 
complex causality. Indeed some of these concept-specific intuitions can 
pull against students' ability to  grasp the underlying causal structure. For 
instance, we have found that some students who reveal an underlying 
relational causal model in most of their reasoning about air pressure still 
lapse back to a linear model when they reason about hurricanes and the 
powerful winds involved (Ritscher, Lincoln, & Grotzer, 2003). 

A further and serious source of challenge, we propose, is unfamiliarity 
with modelling styles toward the complex ends of the dimensions 
introduced above. Causal reasoning about the everyday world does little 
to  prepare students for dealing with underlying mechanisms, constraint- 
system models, highly probabilistic phenomena, or emergent effects. 

The challenge is even greater when more complex modelling styles 
contradict rather than extend simpler ones. This generates particular 
resistance, because students have to abandon their initial thinking styles, 
styles that are fluent and comfortable because everyday explanations 
typically employ them. 

Many scientific theories call for what Frederiksen and White (2000) have 
called 'multimodel thinking7-coordinating multiple levels or explanatory 
perspectives that may involve different modelling styles. Students find 
moving between and coordinating levels to be very difficult (Chi, 2000; 
Wilensky & Resnick, 1999). 

Awareness and appreciation of complex modelling styles benefit from 
inquiry skills that are themselves often underdeveloped, and gain from 
ways of teaching and learning that give inquiry a significant place. As 
noted earlier, in at least some cases learners in principle could easily 
challenge their own overly simple models, if only they looked for gaps in 
the causal story or considered readily constructed counter-examples; yet 
they do not. Inquiry-oriented instruction fosters treating particular 
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models as provisional, under test, and subject to revision or replacement, 
an attitude q-aite removed from students' tendency to want to  know the 
facts (e.g., Clement, 1993; Collins & Ferguson, 1993; Frederiksen & 
White, 2000; Perkins, 1997). 

7. However, good inquiry-oriented instruction by itself is not sufficient to 
fully develop particular complex causal understandings and students' 
general sense of complex causality. As demonstrated in the teaching 
experiments reviewed earlier, it needs to be coupled with direct attention 
to  complex causality, in the context of the particular target concepts. 

While the research reviewed here supports the dimensions of complex 
causality, further important questions remain part of our ongoing research. 
For example, when students get acquainted with more complex modelling 
styles in the context of one science topic, can they transfer their repertoire to 
other science topics that seem quite different on the surface? Transfer of 
learning across different surface situations is one of the abiding challenges of 
pedagogy (see e.g., Bransford & Schwartz, 1999; Detterman & Sternberg, 
1992; Salomon & Perkins, 1989). Anecdotal evidence from our intervention 
studies suggests that students do show some transfer, particularly when the 
instruction fosters reflective abstraction, and we are pursuing research in this 
area. However, even if transfer turns out to be limited, the modelling styles still 
would be important for deepening students' understanding, albeit on a case-by- 
case basis as in the studies of electrical circuits and density. 

If the dimensions of complex causality hold up, even in considerable part, they 
offer significant insight into the difficulties learners encounter. Moreover, 
remember how in the opening anecdote learners find science more baffling 
than magic. It doesn't have to  stay that way. Helping learners to  achieve a 
better understanding of causal modelling styles as they study a range of 
concepts and topics in science could work a little magic in the classroom! 
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