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SCIENCE IS MORE BAFFLING THAN MAGIC

A magician locks his assistant into a cabinet and waves a wand. When he
opens the cabinet, the assistant has disappeared—only to reappear in a cabinet
on the other side of the stage. Breaking tradition, the magician challenges the
audience to explain how it was done.

Most people say: ‘a trap door.” The magician invites people to tour the stage
as active investigators. No trap door is apparent, but still they say, ‘a trap
door.” Surprised, the magician decides to reveal all. He explains that there are
twin assistants. The first assistant is still in a hidden space inside the first
cabinet; the second was already hidden in the second cabinet. He shows the
audience the two assistants side by side. The audience members examine the
cabinet. Most are convinced for the moment, but a week later, many are
saying, ‘you know, it was really a trap door.’
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This story is not very plausible. People examining the stage carefully would
probably be convinced that there was no trap door. People seeing the twins
side by side would probably embrace that theory and stay with it,

However, the stubborn adherence to an initial theory we would not expect to
encounter on the magician’s stage we see all the time in science classrooms
throughout the world. Students often develop tacit theories of their own about
scientific phenomena, and in some settings science teaching uses an inquiry
approach that encourages them to formulate explicit theories. So far so good,
but students’ theories usually diverge considerably from established scientific
views, and yet students tend to cling to them in the face of apparent counter-
evidence. Even when students go on to contrast their theories with the
scientifically accepted view, examine further evidence in support of each, and
appear persuaded, they typically relapse to their initial views when trying to
explain phenomena, although often remembering the “official story’ for the test.
What is not such a plausible scenario for the magician’s audience occurs all the
time in science learning. For many a learner, science is more baffling than magic.

Why does this happen? One source of the problem is certainly the specific
difficulties posed by particular concepts and theories. However, more general
factors may also figure in learners’ troubles. In the story of the magician,
notice how accessible the twin explanation is. It is no more exotic than the
trap door explanation, making a shift from the trap door view to the twin view
relatively easy. Both reflect the commonsense world of everyday things and
actions. In contrast, most scientific models go well beyond causal explanations
of ordinary events. They posit invisible entities like electrons, rules like Boyle’s
Law that govern the global behaviour of systems, and large-scale patterns of
action emergent from small-scale interactions, as with the gas laws. They
entail far greater complexity than everyday explanation.

This article argues that an important source of the difficulty is the narrow
range of types of causal models with which most learners are familiar. We have
in mind the contrast between, for example, simple causal chains (A affects B
affects C) versus constraint system models, as with Ohm’s Law, or with cyclic
causal models, as in predator-prey interactions in an ecosystem, where prey
provides food for predators while predators cull unhealthy prey and keep the
prey population from exploding beyond the capacity of the environment.
Most learners are only familiar with relatively simple styles of causal models,
but many concepts and theories in science depend on styles substantially more
complex in ways that we will define shortly.
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It is important to acknowledge that modelling as an activity relevant to
science learning has received considerable attention in recent years. The
development of constructivist pedagogy in science education has done much
to foster students’ sophistication about inquiry, encouraging them to
formulate theories, test hypotheses, seek consistency, and so on. Conceptual
change theories of learning have encouraged a more reflective stance on
students’ initial and evolving conceptions (Posner, Strike, Hewson & Gertzog,
1982). In the past decade, science education has come to recognize the
important role of modelling in how scientists develop and test explanations
(e.g., Penner, Giles, Lehrer, & Schauble, 1997; Ost, 1987; Stewart, Hafner,
Johnson & Finkel, 1992). Increasingly, students are encouraged to create and
test models of concepts and to engage in the systematic revision of models as
they trade up for models with the most explanatory power towards the
scientifically accepted explanations. This emphasis on student modelling of
concepts has been shown to result in deeper understanding (e.g., Gobert &
Clement, 1999).

These are all positive developments. However, when we refer to styles of
causal models, we have in mind more than just fostering the process of building
models; we want to highlight learners’ repertoires of various types of models.
Despite an increased focus on modelling, and important work on how students
reason about complex forms of causality by Chi (e.g., 2000; Chi & Slotta,
1993), Resnick (e.g., 1994, 1996; Wilensky & Resnick, 1999) and others,
attention to students’ repertoires has been quite limited.

We offer an analysis of four dimensions of complex causality and argue that
the increasingly complex styles along the dimensions present challenges that
help to explain students” difficulties in mastering science concepts. We present
two kinds of evidence in support of this argument. First, we offer analyses of
students’ understanding of several challenging science concepts based on the
extant literature and our research. Second, we report two intervention studies
that we conducted, involving teaching interventions where cultivating greater
complexity in students’ causal models led to better understanding. The
interventions do not involve the teaching of modelling styles in the abstract,
but rather context-situated, inquiry-centered learning experiences that draw
students’ attention to how they are modelling the causality involved in
particular phenomena and encourage more sophisticated causal modelling,
embedded in their science learning.
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A PERFORMANCE VIEW OF SCIENCE UNDERSTANDING

To introduce this perspective, it is useful to take a performance view of science
understanding. What kinds of ‘performances’ are learners actually asked to
attempt around science concepts that build their understanding? For instance,
what sorts of problems do they solve, experiments do they conduct, and
phenomena do they analyze? Such questions resonate with the general notion
of learning as doing and with the constructivist emphasis on inquiry activities
as an avenue to understanding (e.g., Duffy & Jonassen, 1992; Perkins, 1999;
Phillips, 1995; Wilson, 1996). They also allude to a constructivist framework
developed by the first author and colleagues called ‘Teaching for
Understanding’ or ‘TfU’ (e.g., Perkins & Unger, 1999; Wiske, 1998). T{U
foregrounds the role of wunderstanding performances in learning for
understanding—understanding performances being thought-demanding
activities that display a learner’s present understanding as well as advancing it
further.

Reflecting on typical science learning reveals at least three levels of
performance beyond learning particular, isolated facts. We argue that the
third, although found least often, offers the best prospects for preparing
students to understand a range of science concepts.

1.  Learning and applying specific models. Most students learn particular
models for particular situations. For instance, they learn how to model
the fall of released objects in a gravitational field. They can calculate how
long an object will take to hit the ground or how fast it will be going.

2.  Learning and applying modelling systems. Some students learn general
modelling systems, for instance Ohm’s Law and related rules for analyzing
circuits that are sometimes quite complex, or Newtonian dynamics for
analyzing a range of physical motions. Here the core performance is to
use the modelling system to build and perhaps test a model for a given
system, for instance, a complex circuit that students have never seen
before.

3. Learning and reusing modelling styles. Some students eventually become
familiar with a range of modelling styles. For example, students who have
seen circuits modelled with Ohm’s Law, gases modelled with Boyle’s Law,
and dynamic systems modelled with Newton’s laws and conservation of
energy may come to recognize modelling by constraint equations as a

Dimensions of Causal Understanding 121

familiar game. Faced with another set of scientific concepts in the same
style, they may feel comfortable with the manner of thinking involved and
proceed with some confidence and skill to learn and apply the concepts.
There are many modelling styles, as will be seen. By way of preview, a
couple of others are decentralized control systems, as in flocks of birds or
schools of fish where there is no one leader, and large-scale effects due to
small-scale statistical processes of equilibration, as in erosion or the gas
laws or free-market economies.

Comparing the three levels, those familiar with patterns of science education
will recognize that the first is the most common, the second less so, and the
third rather rare. When versions of the third type do occur, typically in the
context of inquiry-based instruction, they usually foreground inquiry processes
(look for logical inconsistencies, design tests, gather evidence), but rarely deal
explicitly with different modelling styles. In general, science instruction hardly
ever stands back to examine the general styles of modelling that figure in
various particular theories. Students who catch on to such styles do so on their -
own, by and large.

This situation, we propose, is an important source of students’ problems in
understanding science. As students progress through the years, they encounter
a wide range of science concepts involving modelling styles that are
increasingly removed from common sense and everyday experience. Without
specific help in understanding these modelling styles, students fail to grasp how
particular modelling systems and models work. They resort to routines for
familiar types of problems—Ievel 1 above—their mastery of the routines
masking their lack of real understanding. Some textbooks and teachers are
complicit in this, foregrounding routines to secure an acceptable albeit shallow
level of performance.

COMPLEX MODELLING STYLES AS A LEARNING BOTTLENECK

Naturally, some concepts confuse students only for lack of an opportunity to
learn. For example, 4- to 7-year-olds hold less biological knowledge than older
children and typically do not have adult-like concepts of living things (Piaget,
1929). However, by age 9 or 10 there is a marked increase in biological
knowledge, and typically by age 11 (Carey, 1985) and perhaps earlier (Carey,
1995), children hold an adult-like conception of living things. This is not to
imply that all confusions have vanished. However, with time, experience, and
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conventional schooling, youngsters do develop a concept of biological
functioning.

More interesting from the present perspective are concepts that prove
particularly resistant to learning. For example, when students study electricity,
many arrive at the idea that electrical current fills the circuit from point to
point, affecting each component in turn within the circuit (Closset, 1983;
Shipstone, 1984). This model is even held by students who have taken
university courses and passed university level exams in physics (Picciarelli,
Gennaro, Stella, & Conte, 1991). In contrast to this circuit-filling model, a
more scientifically acceptable model pictures the electrons in all parts of a
simple circuit moving at the same time and with the same flow rate, rather like
a bicycle chain, once the circuit achieves a steady state (e.g., Dupin & Johsua,
1984; Grotzer & Sudbury, 2000; Hartel, 1984; Shipstone, 1985).

Researchers have documented innumerable cases of science concepts that
consistently, and despite good teaching, prove difficult for students (e.g.,
Clement, 1982; Driver, Guesne, & Tiberghien, 1985; McDermott, 1984;
Novak, 1987). The present analysis proposes that many of these concepts
characteristically involve complex (in ways to be defined below) causal
modelling styles. Such styles do not simply extend but rather contradict
simpler modelling styles. In the case of simple circuits, the circuit-filling model
(e.g., Shipstone, 1983; Slotta & Chi, 1999) involves a kind of serial causality,
like dominoes tipping over one after the other, whereas the bicycle-chain model
involves a simultaneous causality, where everything happens at once (Grotzer
& Sudbury, 2000). For other kinds of contradiction, scientific models
sometimes replace an earlier or intuitive deterministic view by a probabilistic
one, or a central causal agent by a system with emergent effects (Resnick,
1994, 1996). Also, many scientific theories involve multiple layers of linked
modelling systems, and the modelling systems at different levels contrast in
their modelling styles, generating confusion (Frederiksen & White, 2000;
Frederiksen, White, & Gutwill, 1999).

Support for the idea that students’ causal modelling is less than adequate for
learning complex science concepts can be found in the research literature.
Driver and colleagues (Driver et al., 1983) outlined characteristics of student
thinking that impede students’ ability to grasp scientific concepts. Some of
these characteristics concern how students reason about causality. For
instance, students tend to focus on changes as opposed to steady states,
consequently failing to see a need to explain systems in equilibrium. Also,
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students tend toward linear causal reasoning, looking only for sequential
chains of causes and effects when systemic patterns are in play.

Brown (1995) identifies core causal intuitions that can lead students astray when
learning difficult science concepts. He points out several types of attributions of
agency—initiating, initiated, reactive, and so on—that can be misapplied.
Andersson (1986) draws upon Lakoff and Johnson’s (1980) notion of an
experiential Gestalt of causation as a possible underlying element in scientific
misconceptions. He considers how students extend the primitive notion, learned
in infancy, of an agent that physically affects an object to a sense of ‘the nearer,
the greater the effect.” Andersson outlines how this and like notions play a role
in difficulties students have in learning various science concepts.

Chi (1992, 2000) argues that students’ struggles reflect misunderstandings
about the ontological status of concepts: students mistakenly assign causal
attributes to processes that have structures of emergence, which in her
terminology are essentially non-causal. diSessa (1993) introduced the concept
of phenomenological primitives (p-prims), small knowledge structures that
people use to describe a system’s behaviour. Though not necessarily
generalizable beyond the particular contexts that elicit them, these schemata
come into play as ready explanations or components of explanations. While
often considered to be self-explanatory and to need no justification, p-prims in
their very accessibility can lure children and adults into mistaken explanations.

Complex modelling styles are all the more challenging because students are not
adept at patterns of inquiry that reveal weaknesses in simpler models and drive
toward models with greater explanatory power. In everyday argument, people
commonly make convenient assumptions, neglect alternatives, excuse and
patch favoured theories, and so on (e.g., Voss, Perkins, & Segal, 1991). Kuhn’s
(1991, 1993) research identifies a number of shortfalls in students’ general and
scientific reasoning, including difficulty in generating counter-evidence and
persistence of a favoured theory despite blatant counter-evidence. Kuhn,
Amsel, and O’Loughlin (1988) have shown that students’ prior expectations
make it hard for them to perceive co-variation evidence that contradicts their
expectations. For instance, students have difficulty perceiving instances where
a variable is non-operative or is operative but leads to a different outcome than
students expect.

Sandoval (2003) found that for the most part, students sought plausible accounts
of available data, understood the need for coherent explanations, and were able
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to develop them. However, they seemed more inclined to generate what they
perceived as a right answer than to support their claims by using the data as
evidence in support of a theory. Chinn and Brewer (1993) review research and
examples from the history of science in support of seven possible responses to
anomalous data in the development and revision of theories. They argue that the
likelihood of changing one’s theory is not particularly high and that it is much
more common for individuals to patch their theories, or to ignore or reject the
anomalous data, than to take the data into account and revise one’s theory.

In summary, such research suggests that the manner in which we reason about
causality influences how we analyze specific instances of causation in science class
and beyond. The present framework asserts that learners tend to assimilate
scientific concepts to a limited repertoire of causal modelling styles that are
relatively simple, as specified below. An important instructional implication
follows: learners will find whole ranges of complex science concepts more
accessible when the instruction familiarizes them with the types of models involved,
not in the abstract but in the context of the science concepts to be learned.

We develop our argument as follows. The following section explicates four
dimensions of complexity for causal models. After that, we report evidence
from the literature and some studies of our own suggesting that learners’ early
models indeed fall at relatively low levels of complexity on the dimensions.
This is not terribly surprising, but it does substantiate the notion that the levels
defined as ‘simpler’ are indeed more accessible, illustrates how the dimensions
apply to several topics, and helps to explain what makes them difficult.

Next, we report two intervention studies designed with the dimensions in
mind. The studies sought to enrich students’ causal modelling styles and
thereby advance their understanding in two problematic areas of science
learning, electrical circuits and density. The positive results offer evidence for
our framework, but the case is not meant to stand on those alone. These
studies are representative of a larger body of evidence (e.g., Basca & Grotzer,
2001; Grotzer & Basca, 2003; Grotzer & Sudbury, 2000; Houghton, Record,
Bell & Grotzer, 2000), the trends of which will be discussed below.

FOUR DIMENSIONS OF COMPLEXITY IN CAUSAL MODELS

The central notion behind this framework is complex causality: some
explanations are more complex than others in fundamental ways. But what do
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we mean by ‘complex?’ We recruit the term from its natural language origins
as an apt umbrella term. The science concepts examined are ‘complex’ in
several different senses already illustrated—because of simultaneous models at
different levels, more intricate causal relationships than simply ‘A causes B,
models that conflict with typical expectations, and other senses are elaborated
below. There is no implication that the label ‘complex’ suits each of these
senses equally, only that it fits the overall tenor of the analysis well enough to
provide a convenient label.

Table 1 presents four proposed dimensions of complexity in models:
Mechanism, Interaction Pattern, Probability, and Agency. Relative to these
dimensions, the causal explanations that people offer for everyday events are
simple in several senses. Recall again the accessibility of the twins explanation
for the magician’s trick. As to Mechanism, the twins explanation depends on
ordinary ideas about a familiar world, what Table 1 calls commonplace
elements. As to Interaction Pattern, the twins explanation proposes a simple
linear causal relationship: the similarity of twins causes people to think it’s the
same person. As to Probability, the causal relationship is close to deterministic:
the perceptual similarity of the twins triggers a perception of the same person,
unless an observer sees them side-by-side. As to Agency, there is a central
agent: the magician, with the collusion of the twins, creates the illusion.

In contrast, scientific models exhibit greater complexity, usually on more than
one of the four dimensions. Evolution explained by natural selection and
elementary electrical phenomena explained by Ohm’s Law and the behaviour
of electrons serve as illustrations for this introduction. Further examples
appear in the course of the article. Italics refer to categories in the framework:

*  Mechanism. This dimension refers to the causal mechanisms invoked in
an explanation. At their simplest, they take the form of (not necessarily
correct) surface generalizations from experience, like ‘animals learn their
necks need to be longer’ or the token use of labels like ‘the balloon sticks
to the wall because of static electricity.” Scientific explanation typically
involves one or more levels of underlying mechanism involving properties,
entities, and rules that are not part of the surface situation, as with DNA
or electrons and the rule systems governing them. Often the deep
explanation entails inferred or posited entities that are part of the
scientifically accepted explanation, but not easily verifiable by non-
scientists.



127

Dimensions of Causal Understanding

David N. Perkins, Tina A. Grotzer

126

Interaction Pattern. This dimension refers to the patterns of interaction

Ohm’s Law, a constraint-based
Increased complexity along this

. In contrast, natural selection offers an account of

evolution that involves relational causality and re-entrant causality, as in

the co-evolution of bees and flowers.

system, addresses electrical circuits.
This dimension refers to expectations about the level of

certainty in causal relationships. At their simplest, such relationships are
deterministic, consequences inevitable. In contrast, contemporary natural

between causes and effects. At their simplest, such patterns take the form
selection recognizes evolution as a chaotic system.

‘A causes B, as in, “They needed wings and grew them,? or ‘Electricity
dimension can also entail movement from sequentiality towards
simultaneity between causes and effects and from linear towards non-

Ohm’s Law treats

Causal patterns can become harder to detect with

increased complexity along this dimension because of increased noise and

lack of reliable correspondence between causes and effects.
Agency. This dimension refers to agency and to the compounding of

agency in ways that lead to new and not easily anticipated outcomes. The
simplest level involves central agents with immediate influence: the ducks

electrical circuits as deterministic systems, but it is order from chaos,
averaging effects smoothing out atomic-level events into large-scale

In contrast,

the battery makes the current move.
from the perspective of current science, species are emergent entities of
evolution. Electrical circuits display self-organizing characteristics, where

circuit configurations can yield unexpected (if you are not in the know)
large-scale regularities, as in oscillations. Increased complexity along this
dimension can also entail increasing spatial distance or temporal delay

between causes and effects and forms of agency that are non-intentional

For example, research on reasoning about gears

no claim is made about strict order of difficulty or of developmental stages. A
found that younger children tended to reason in functional terms {Metz, 1991)

fair amount of developmental research supports a general trend of younger

children reasoning at less complex levels and older children at more complex
or in terms of surface level generalizations without an underlying mechanism,

While each of the four dimensions ranges from a simple to a complex extreme,
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Table 1: Dimensions of Complexity in Models
Mechanism Interaction Pattern Probability Agency

From a same-level generalization to an inferred underlying
mechanism

From A causes B to complex reciprocal relations
and constraint systems

Froin deterministic causality to
chaotic and quantum systems

Froin a central and direct agent to highly
distributed and emergent causality

Surface generalization: Simply describes the reguiarity under
consideration in a gencralized way (‘When it is hot and it rains,
there is lightning ') Often incorrect or confuscs correlation with
causation. { ‘Heat and rain cause lightning”)

Token Explanation: Some cntity or phenomenon, intentional or nnt,
made things come out that way. Entily/phcnomencn’s behavior
parallels outcome, no real differentiation. (Static electricity makes
it happen.”)

Function-centered: Explains in terms of fonn-fits-function but

Simple linear causality: A impinges on, pushes,
influences B. A is scen as not affected. E.g., A pushes,
pulls, initiates, resists, supports, stops B. A is typically
seen as active as in pushing, but can be passive as in

like A causes B causes C or branching pattems.
Necessary and sufficient causes, etc. Often includes

without any elaborated intentional or blind adaptive mech
Often teleological ( plants grow upward because they need the
sun’). May be tusightful as far as it goes (‘archeologists’
explanations of the function of prehistoric tools’).

Commonplace elements: Constructs explanations with familiar
elements of the system in question rather than those underlying it.
(Can be illuminating. Darwin's theory of natural selection explains
not at the genetic level bul in ferms of observable adaptive traits,
the everyday notion of inheritance, etc.)

Analogical model: System explains target phenomenon by analogy
and analogical mapping (e.g., electricity as fluid flow).

Underlying mechanism: Properties, entities and rules introduced
that are not part of the surface situation but account for it (e.g.,
Ohm’s Law; and underneath that electrons and their rules of
conduct.) There arc often two or three levels of underlying
mechanism, each underlying the previous. Form-fits-function

p ly causes of lower saliency in the
causal story.

Mediating cause: Al least three causes in play, M
inediates the effect of A on B but not simply in the sense
of A causes M causes B. E.p., M is a barrierto A
affecting B, or a catalysl, or an enabiing condition.

Interactive causality: Two-Way Causality: Inleractive
causation with a mutual cffect (as in parricle attraction).
Mutual cause with two outcomes (as in symbiosis}.
Relational causality where the outcome is due to the
relationship between two variables (as in pressure or
density differentials).

Re-entrant causality: Sitnple causal loops as in
escalation and homeostasis.

Behavior of system reflects

lanations that include an clab d causal for the
adaplive process, intentional or mechanistic, and thus are not solely
function-centered.

a set of constraints tha ystem ‘obeys’--constancy,
conservation, and covariation rulcs (e.g., conservation of
energy, Ohm’s Law, law of gravitation).

Deterministic systems: Certain

inevitable, and p
outcomes (e.g., as in Ohm’s Law, law of
gravitation).

Noisy systems; Basically deterministic
systems perturbed by random or
unanalyzcd factors (air friction,
turbulence on thrown objects)

Chancy systems: At certain junctures,
things might go one way or another with
a certain probability.

Chaotic systems: Fundamental
unpredictal in long tenn due to
‘butterfly effects’ fe.g., the weather)

Order from chaos: Averaging effects
sincoth out chaotic systems into highly
orderly Jarge-scale pattemns (e.g., gas
laws).

Fundamentally uncertain systems.
quantuin theory, uncertaiuty bnilt into
the nature of ohjects and events, even for
very smail systeins in the very short
term.

Salient central agenis: One or a very small number of
key factors fairly directly and conspicuously yield the
result. May be interwoven with
(see mentions ion in the mechanism category).

Nonobvious central agents: With a passive role or
dclayed or spatially remnnte influence. (e.g., spatially
remote as in gravity or electrostatic forces).

Additive causes: Causes with curnnlative cffects over
time (e.g.. erosion).

Long causal chains, branching structures, cycles: (as
in ripple effects of an ecological disaster).

Causal webs: Complex webs of causcs and effects,
often involving ing at the population level (as in

ecologies).

Trigger effects. A modest influence ‘lopples’ a
complex syslem into a new statc or pattern of activity
(e.g.. tipping points in epidemiology)

Self-organizing systems. Secmingly messy systems
evolve into clear patterns nver time without an extcrnal
agent or au intcmat bluepriut.

Emergent entities and processes: Agency is
distribnted. actions of inany individual agents ata
lower level converge 1o give rise to new, eomplex
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whereas older children included an underlying mechanism (Lehrer & Schauble,
1998). On the other hand, there is also evidence that relatively young children
display some understanding of more complex concepts along the dimensions in
the right contexts. For instance, analogical models are placed toward the
complex end along the dimension of Mechanism and, while young children do
not typically construct analogical explanations of science phenomena at the
level of scientific experts, they do indeed have a developing understanding of
analogy (e.g., Goswami, 1992). (An in-depth discussion of developmental
issues can be found in Grotzer, 2003.) Moreover, each level of the four
dimensions within itself allows simpler and more complex variations. For
example, entirely within the mediating cause level of Interaction Pattern, A
causes M causes B seems a more accessible relationship than M catalyzes A
causes B. Accordingly, our general claim is simply that difficulty increases
roughly with complexity along the dimensions.

With this emphasis on the challenges of complexity, the virtues of simplicity
also need to be acknowledged. The simpler ends of the four complexity
dimensions are not intrinsically ‘wrong’. Explanations constructed out of them
may suit very well the phenomenon or purpose at hand. The point, rather, is
that typical scientific explanations routinely involve more complexity because
the target phenomenon demands it, and often learners do not manage to get
there.

How then do these more complex modelling styles make things harder for
learners? One way is simply their lack of familiarity. Another, as noted earlier,
is that some modelling styles of higher complexity do not simply elaborate but
rather contradict other more familiar modelling styles of lower complexity.
The more complex causal styles challenge basic assumptions about how the
world works, such as that magnitude of effect correlates with magnitude of
cause or temporal priority between causes and effects (Bullock, Gelman, &
Baillargeon, 1982). Often today’s scientific models replace an intuitive
deterministic view by a probabilistic one, or a central causal agent by a system
with emergent effects (Resnick, 1994, 1996). Moreover, a number of scientific
theories include multiple layers of linked modelling systems with contrasting
styles, as in the relation between the constraint system of Ohm’s Laws applied
to a whole circuit and the forces that govern current flow at the micro-level,
which involve interactive causality (Frederiksen & White, 2000; Frederiksen et
al., 1999). Students have a notoriously hard time coordinating different levels
of explanation (Chi, 2000; Wilensky & Resnick, 1999).
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Others have noted the importance of one or more aspects of these dimensions
in students’ scientific misconceptions. For instance, attention has been paid to
difficulties with issues of agency, such as expecting centralized rather than
decentralized control structures (Resnick, 1996), or not recognizing the
phenomenon of emergence (Resnick, 1994; Chi, 2000), or focusing on linear
interaction patterns (e.g., Driver et al,, 1983; Barbas & Psillos, 1997), or
difficulties reasoning at and between different levels of mechanism (Chi, 2000;
Frederiksen & White, 2000; Wilensky & Resnick, 1999). Our purpose in
setting forth the dimensions of complex causality is to offer a broader
framework that can serve as a tool for analyzing the full range of difficulties in
understanding causal structure.

EVIDENCE FOR THE DIMENSIONS OF COMPLEX CAUSALITY FROM
LEARNERS’ INITIAL CONCEPTIONS

With the dimensions of complex causality outlined, questions of evidence
invite attention. Notice that the issue is not whether learners’ initial
conceptions are mistaken by the measure of contemporary science. They
almost always would be, given the sophisticated knowledge behind
scientifically accepted theories. Rather, the framework predicts that there
would be a strong trend for initial conceptions of scientific phenomena to be
low on the dimensions of complexity.

We tested these implications by examining initial conceptions of several science
topics, both in the literature and through classroom-based studies: electrical
circuits, static electricity, density, ecosystems, and natural selection. The first
and third are also the focus of intervention studies reported later. The results
offer support for the framework. As acknowledged earlier, this is not terribly
surprising, since we constructed the levels of complexity to be plausible.
However, the results do affirm that that learners find more accessible the levels
defined as ‘simpler’. Also, the examples illustrate how the dimensions fit a
range of topics and help to explain what makes them ‘more baffling than
magic’.

Electrical Circuits
As noted earlier, researchers have pointed to the difficulty that students have

in conceiving of the circuit as a system (e.g., Dupin & Johsua, 1987;
Shipstone, 1985) and in reasoning about the types of causality present in an
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electrical circuit (Andersson, 1986; Barbas & Psillos, 1997). Students
typically try to analyze effects locally (Cohen, Eylon, & Ganiel, 1983;
Shipstone, 1985) and following instruction, they commonly employ what can
be called a ‘cyclic sequential’ causal pattern for how the current ‘flows.” They
envision the circuit as initially empty and filling with a ‘substance-like
material’ (Slotta, 1997; Slotta & Chi, 1999) that eventually reaches the bulb
and causes it to light. The current is seen as traveling from point to point and
affecting each component in turn as it is encountered within the circuit

(Closset, 1983; Shipstone, 1984).

Slotta and Chi (1999) and Slotta (1997) have found that a substance notion of
the electrical current, as opposed to a process notion, creates a major
stumbling block for students learning to think about electrical circuits. Heller
and Finley (1992) found that of the many misconceptions that teachers hold
about the nature of the circuit, the belief that ‘the circuit is initially empty of
the ‘stuff’ that flows through the conductors’ (p.268) is seldom modified or
compromised. This belief fits firmly with a cyclic sequential model. The cyclic

sequential model has been found even in university physics (Picciarelli et al.,
1991). ~

In addition to the focus on substance versus process (Chi & Slotta, 1993;
Slotta & Chi, 1999), students’ difficulties appear to stem in part from
elements of a persistent underlying linear causal model that students attempt
to apply and from their lack of a repertoire of intermediate models of
causality (Andersson, 1986; Grotzer & Sudbury, 2000; Rozier & Viennot,
1991). Numerous researchers have demonstrated that students tend to create
uni-polar models that join one part of the battery to one part of the bulb and
describe ‘flow’ of electricity as moving from the battery to the bulb (e.g.,
Andersson & Karrqvist, 1979; Fredette & Lochhead, 1980; Osborne &
Gilbert, 1980; Tiberghien & Delacotte, 1976). These uni-polar models fit
with a simple linear model of cause and effect in which one thing typically
makes another thing happen in a domino-like pattern of effects. Turning to
the dimensions, from the standpoint of Mechanism such learners are
explaining electrical current with a token cause. Even when they refer to
electrons, the electrons simply fit into a story of flow, rather than the flow
reflecting a set of rules that applies to electrons. From the standpoint of
Interaction Pattern, the students’ accounts reflect simple linear causality: the
battery pushes the electrons and the electrons in turn light the bulb.
Regarding Probability, the system is seen as deterministic. Regarding Agency,
there are, the battery and in turn the electrons.
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Scientists, on the other hand, might envision the system at the particulate level as
described by a ‘cyclic simultaneous’ kind of causality, where electrons already
exist throughout the wire (Barbas & Psillos, 1997; Grotzer & Sudbury, 2000).
Hooking the wire up to a battery causes flow, the excess negative charge in the
battery repelling nearby electrons, which repel other electrons. As mentioned
earlier, the net effect on the macro-scale is that current moves all at once, more
like the movement of a bicycle chain (Shipstone, 1985). Scientists would
characterize the overall system in terms of differentials between electrical potential
or by a set of constraints. While there are electrons all along the wire, the battery
creates an imbalance that results in flow as electrons move from areas of greater
concentration towards areas of lesser concentration. Flow is a systems level effect.

The scientists’ account involves an elaborated wunderlying mechanism
(Mechanism dimension) and relational, re-entrant (as the circuit reaches
equilibrium), and constraint-based (Obm’s Law) causality (Interaction
Pattern). Scientists would view the circuit’s behaviour as deterministic at the
macro-level (Probability). However, the circuit’s behaviour reaches its steady
state through a self-organizing process, the equilibration of the charges
involved (Agency).

Static Electricity

From the standpoint of the scientifically accepted explanation, elementary
electrostatics involves an underlying mechanism (Mechanism dimension) of
electrons, electron displacement, repulsion of like charges, attraction of
different charges, and so on. This mechanism implicates interactive causality
and also re-entrant causality through the process of reaching equilibrium
(Interaction Pattern).

We investigated how 96 fourth graders structured their initial explanations of
static electricity phenomena by scoring their journal explanations in response
to a demonstration where a balloon was rubbed against a piece of wool and
then was held near other objects (bits of paper, someone’s hair, and another
balloon that had also been rubbed by wool). Protocols were scored for the
level of Mechanism and the Interaction pattern that they represented. Two
raters scored the protocols and inter-rater reliability was assessed using a
Pearson Product Moment Correlation (r = .97).

Students’ explanations tended to take very simple and efficient forms, for
example: ‘Electricity pulls your hair up’ [Subject #15]. ‘I think it happened
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because of the static electricity coming from the wool’ [Subject #28]. °I think
it happened because the electricity from the wool gave it to the balloon’
[Subject #2]. I think it happened because it had a static reaction to the
electricity on the balloon” [Subject #34]. “When you rub the cloth to the
balloon, something happens to the balloon to make it stick’ [Subject #4].

Such responses plainly involve token causes (Mechanism) and simple linear
causality (Interaction Pattern). Once in a while, students made comments that
referred to interactive causality, for instance, ‘There is an attraction between
the wall and the balloon. Something about the wall and something about the
balloon have been changed and it makes them attract’ [Subject #82]. The
relational causal explanations that students offered were not necessarily
scientifically accurate. For example, one student described air pressure as
‘pushing’ the balloon to the wall while the wall ‘sucks’ the balloon towards it
using ‘static cling’ [Subject #25]. However, even though the student has not
learned the information relevant to the scientifically accepted explanation, he
does hold a causal form that will fit the information rather than distort it.

Density -

Density and the related phenomena of floating and sinking are matters we
encounter in everyday life and are common parts of elementary science
curricula. However, they pose considerable challenges to learners. The
majority of students hold undifferentiated weight and density conceptions
(Smith, Carey, & Wiser, 1985; Smith, Maclin, Grosslight, & Davis, 1997,
Smith, Snir, & Grosslight, 1992). Children’s earliest notion of density is ‘heavy
for size,” a concept which resides within their concept of weight (as in ‘a heavy
telephone’) (Smith et 4l., 1985). Smith and colleagues (1985) found that in the
case of density, students tend to focus on one feature of an object (either
weight, size, or shape), with one often having more salience for them than the
other. Students also often attend to only one feature of a kind of material (a
liquid is thin, thick, or loose). They argue that until children realize that the
heaviness of the kind of material is a property of that material, they cannot be
said to have distinguished the concepts of weight and density. Yet, the salience
of the surface features (felt weight) attracts students’ attention, making it
unlikely that they will look beyond it to infer the existence of density.

This limited focus is also found when students begin to think about sinking and
floating. Typically, students focus only on the object that they are testing to
see if it sinks or floats (Kohn, 1993). In other words, they do not focus
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relationally when attempting to describe the cause of sinking and floating.
Raghavan, Sartoris, and Glaser (1998) found that prior to instruction only 2
students of 36 revealed some understanding of the significance of relative
density. Most of the students in their study (28 of 36) focused on properties
of helium or air to explain why a helium balloon rises.

The present analysis of complex causality helps in systematizing and
understanding these shortfalls. Along the dimensions of complex causality,
density and its role in sinking and floating is challenging both in terms of
Mechanism and Interaction Pattern. On the dimension of Mechanism, density
is an intensive quantity—its existence must be inferred by holding volume or
mass constant and assessing the implications of the other variable (Inhelder &
Piaget, 1958) and this gives students difficulty (e.g., Bliss, 1995; Rowell &
Dawson, 1977). In explaining sinking and floating, differences in mass per
unit volume, and so forth, density plays the role of an underlying mechanism
that is not part of the surface situation. Everyday experience does not
necessarily provide opportunities to hold volume or mass constant to make the
existence of density obvious. Weight, on the other hand can immediately be
perceived or felt as one lifts an object.

Considering the causes of differences in density in terms of atomic theory rather
than in terms of the relationship between mass and volume is no less complex.
The atomic mass, the atomic bonds, the spacing and arrangement of atoms and
molecules, and so forth, are entities that are not part of the surface features
available to students. Students need to accept the idea that there are atoms and
that they have mass, without ever being able to witness it directly. This engages
students in the highest levels of complexity along the Mechanism dimension.

In terms of Interaction Pattern, understanding density involves relational
causality. Students need to reason about the relationship between mass and
volume and understand that if the relationship between them changes, the
density changes. Similarly, in understanding the role of density in sinking and
floating, students need to reason about the relationship between the densities
involved. This relational type of causality involves recognizing that an effect
is caused by the relationship, often one of balance or imbalance, between
elements of a system. Neither element is the cause by itself. Thinking about
relational causality requires a departure from linear, unidirectional forms of
causality where one entity acts as a causal agent on another affecting an
outcome in one direction only—in a domino-like pattern (Grotzer, 1993;
Perkins & Grotzer, 2000).
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Ecosystems

Many teachers consider ecosystems concepts to be important, and relatively
easy for students to learn (Barman & Mayer, 1994). The wealth of
investigations examining students’ misconceptions about ecosystems
contradicts this belief. A full scientific account of ecosystems is a formidable
construct, involving underlying mechanisms such as bacteria (Mechanism
dimension), interactive causality and re-entrant causality (Interaction Pattern),
chancy and chaotic systems (Probability), and causal webs, trigger effects, and
self-organizing systems (Agency). However, students’ typical accounts capture
liccle of this complexity.

Research shows that when reasoning about effects in ecosystems, students
usually miss the connectedness within the system and the implicit complex
causal relationships (e.g., Griffiths & Grant, 1985; Grotzer & Basca, 2003;
Webb & Boltt, 1990). For instance, Barmen, Griffiths, and Okabukola (1995)
found that senior high school students believed that a change in one population
will not be passed along several different pathways of a food web, and that a
change in one population will only affect another population if the two have a
predator-prey relationship. Previously, Griffiths and Grant (1985) found
similar beliefs in a study of grade 10 biology students. Grotzer (1989, 1993)
found that the tendency to ignore indirect effects was, in part, age-related.
Seven-year-olds were less likely than 9- and 11-year-olds to detect indirect
effects on their own. However, instances where indirect effects were ignored
or explicitly rejected occurred with fairly high frequencies across the age
groups.

Students do not easily recognize interactive causal relations without
scaffolding. Most students break these patterns apart and miss their reciprocal
aspects. According to Green (1997), although many systems in our world
(economic, human relationships) involve complex chains of cause and effect
encompassing two-way causal processes, people tend to construct one-way
linear chains when explaining them. He found that when uncued, only 16%
of 20-year-olds gave two-way causal accounts of predator-prey relationships.
Further, only 9.5% used two-way causal models when explaining a three-level
problem. Barman and Mayer (1994) found that students defined a food web
as a more realistic representation of feeding relationships; however, when
probed as to what would happen to an ecosystem if the fox population were
to be reduced or the rabbit population doubled, the students revealed a lack of
understanding of the mutual relationships within a food web. The students
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tended to believe that a change in the size of a prey population has no influence
on its predator’s population, and that a change in the population of a first-
order consumer will not affect one or more producer populations.

Such shortfalls are particularly notable because students in principle have
enough basic familiarity with foxes, rabbits, and their everyday actions to
construct a more complex story. There are no esoteric entities like electrons or
viruses in play. Students’ everyday knowledge creates ample opportunities for
putting their simpler models at risk through common-sense reasoning that
constructs disconfirmatory instances. However, students fail to think in terms
of populations and see the systemic implications of what they know.

Natural Selection

Ohlsson {n.d.) offers an interesting set of findings about initial conceptions of
evolution. He conducted interviews of a number of college students, collecting
their explanations for adaptive changes in species over time. Responses
recounting Darwinian natural selection were rare. Ohlsson classified the
responses into seven categories as follows: envirommentalism, traits develop
when the circumstances present a demand or opportunity; survival, the
relevant trait and its opposite are in the population, and members without the
trait die; creationism, God creates the trait; training, organisms learn or adapt
during their lifetime and pass on traits {(Lamarckian); mutationism, the trait
suddenly appears in small numbers and spreads in the population; mentalism,
animals decide, discover, learn, or are taught new behaviours or how to give
themselves new traits; crossbreeding, traits arise via interbreeding between
species; dissemination, organisms with the trait gradually increase in numbers
generation by generation, displacing those lacking it.

We analyzed these categories from the perspective of the four dimensions.
Most responses were composed of commonplace elements (Mechanism
dimension), accounting for evolution by piecing together phenomena at the
same level as adaptations themselves, rather than at an underlying level, as
with genetics. It should be noted that Darwin’s own theory of natural
selection was a theory constructed of commonplace elements such as
inheritance of traits (well-known from selective breeding), albeit one much
more complete than the students offered. The explanations were mostly
simple linear (Interaction Pattern), as with environmentalism, where the
circumstances somehow cause the trait to develop. Concerning the Probability
dimension, most accounts were deterministic: the adaptation would follow
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inevitably. Concerning the Agency dimension, there was some recognition of
aggregate effects, adaptations dominating in a population over time, but also
sometimes central agents with immediate influence, again as with
environmentalism where the environment causes the adaptation.

It’s notable that, as with the ecosystems topic, students surely often had enough
knowledge to challenge their models. Their responses show failure to examine
their models critically for gaps in the causal story. Students’ survival,
crossbreeding, and dissemination theories assume that the relevant trait
conveniently appears or is already in the population. The environmentalism
theory assumes that somehow the environment draws out the adaptation
without explaining how. The training theory takes it for granted that the
acquired traits are passed along without explaining how.

In summary, analyzing the students’ thinking through the dimensions of
complex causality helps to delineate the kinds of learning challenges particular
students or groups of students are likely to face and does so with greater
specificity than other qualitative lenses that focus on single aspects of
dimensions (such as a tendency towards linear causal reasoning). The
framework provides more than a sense of what is problematic with students’
reasoning in a given instance; it offers a sense of what models would offer a
better fit.

EVIDENCE FOR THE DIMENSIONS OF COMPLEX CAUSALITY FROM
INTERVENTIONS

The present theory predicts that students tend toward very simple causal
explanations, as gauged by the four dimensions. While the studies reviewed
above support that prediction, one can still question whether the results reflect
shortfalls in learners’ repertoires of causal models or something else. A
distinction can be drawn between instances of causation and the rules of
causality (Murayama, 1994; Pazzani, 1991). Causation refers to explanations
of cause and effect in specific instances—the particular mechanism in play and
so forth—while causality refers to the rules of cause and effect relationships. A
challenge to the hypothesis set forth is that perhaps the former is the sole
source of students’ difficulties. That is, perhaps the strangeness or intricacy of
particular topics such as electricity or evolution somehow masks or suppresses
models that are part of students’ repertoire, or are easily enough constructed
by students when the content is less intricate and more familiar.
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Teaching experiments provide a direct way to approach this puzzle. We have
taught students more complex models in the context of learning science
concepts, examining whether this expands their understanding, in contrast to
teaching only the science concepts. Generally speaking, the studies we have
conducted contrast control conditions, featuring what would be considered
best practices in science instruction, with treatment conditions that add explicit
attention to styles of causal modelling.

Great effort was invested in ‘honest’ control conditions that supported learning
for understanding, without foregrounding complex causality. The control
group instruction included Socratic discussion, computer simulations,
grappling with discrepant events, and so forth. All of the students engaged in
constructing models (on white boards, in journals, etc.), sharing and discussing
those models, and critiquing the models in terms of which had the most
explanatory power given the evidence that students were discovering. The
teachers and researchers scaffolded these discussions to help students focus on
bringing evidence and counter-evidence to bear on the process of critiquing the
models. Sandoval (2003} recently suggested that public classroom discourse
with teacher guidance of this type might be necessary to help students see what
claims are warranted by the data. The instructional design assumed that
students’ models would evolve and change over the course of repeated
explorations. However, the control instruction never focused directly on the
causal complexities of the science concepts in question.

We turn now to treatment conditions. The interventions never involved merely
providing students with generic accounts of complex modelling styles. Rather,
we introduced what we call RECAST activities or ‘activities designed to REveal
the underlying CAusal STructure.” We also introduced discussions abont the
nature of causality—the specific causal rules and patterns in play—in the
context of learning particular science topics. All this was subject to the same
modelling, discussion, and critique for explanatory power as other ideas and
simpler models that students advanced. In other words, the RECAST activities
and discussion about causal structure were the added ingredients that marked
the contrast between our treatment conditions and the generally good teaching
and learning for understanding in the control conditions.

The full specifics for each topic are described in topic-focused sections that
follow. However, to give a feel for RECAST activities, we describe one
employed in the intervention on density to be detailed later. In exploring the
role of density in sinking and floating, students see a demonstration that directs
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their attention from a linear causal interpretation to a relational causal
interpretation. They are first shown a big piece of candle that sinks when it is
placed in a clear liquid, and a small piece of candle that floats when it is placed
in a clear liquid. This outcome fits with most students’ expectations. Then the
pieces of candle are switched. To the students’ surprise, the big piece of candle
floats and the small piece of candle sinks. The outcome pushes them beyond
a linear, feature-based causal conception of ‘the weight makes it sink’ or ‘the
density makes it sink’ to a relational causal conception. Students begin to
focus on the liquid and the object and realize that the causal pattern is a
relationship between greater and lesser density of objects and liquid (Liem,
1981). These causally-focused activities reveal, through results that are
discrepant with students’ expectations, that the structure of the causality
involved is different than students anticipate and offer insights into the nature
of that causality. Such activities were the basis of explicit discussion about the
nature of causality in the causal treatment group described below.

EVIDENCE FROM AN INTERVENTION CONCERNING ELECTRICAL
CIRCUITS

We discussed earlier how students learning about electrical circuits become
entrenched in a linear causal pattern (Interaction Paiiern): the electrons begin
at the battery and fill up the circuit. Or sometimes after further instruction,
they develop another model also resistant to change, a cyclic sequential
pattern: the empty circuit fills sequentially and the electrons are then recycled.
A better scientific account invokes a cyclic simultaneous causal pattern in
which causes and effects co-occur, the electrons moving in the circuit like a
bicycle chain (Shipstone, 1985). In terms of the Interaction Pattern dimension,
this involves re-entrant or cyclic causality that occurs simultaneously rather
than sequentially and necessitates attention to the whole system at once. At a
slightly more complex level, an electrical potential model, it can be said to
involve relational causality, electrons repelling and being repelled when
electrical current is flowing in a steady state, a differential in the concentration
of electrons that results in flow; and it can also be expressed through
constraint-based causality, in the form of Ohm’s law. The scientists’ account
also involves an elaborated underlying mechanism (Mechanism dimension).
Scientists would view the circuit’s behaviour as deterministic at the macro-level
(Probability). However, regarding Agency, the circuit’s behaviour reaches its
steady state through a self-organizing process, the equilibration of the charges
involved (Agency).
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We designed an intervention unit using RECAST activities and discussion to
shift students toward a cyclic simultaneous model of electrical circuits. Given
the age of the subjects, the study did not attempt to move students beyond the
cyclic simultaneous model to an electrical potential model, as we might have
done with middle school students. Instead, it tested whether the intervention
could move students beyond the resistant cyclic sequential model.

Method
Subjects

The subjects were students in three 4th grade classes (n=72). The students
were from two elementary schools in the Boston area with an ethnically diverse
and mixed SES population. As discussed later, the three classes proved to be
equivalent in their pre-intervention performance on the assessments employed.

Procedure

All of the students participated in a three-week (two classes per week) mini-
unit on static electricity followed by the Science and Technology for Children
‘Electric Circuits’ unit (NSRC, 1991), for approximately eight weeks (two
classes per week). One class (C&D for causal plus discussion) participated in
RECAST activities and explicit scaffolded discussions of the underlying causal
modelling styles. The second class (CAU for causal only) participated in
RECAST activities, and discussed the causal models they suggested, but
without the explicit scaffolding around causal modelling styles. The third
class (CTL for control) participated in the static and electricity units without
the RECAST activities, discussing instead the activities they did do and their
ideas about models for what was going on, but without scaffolding regarding
causal modelling styles. More details on the instructional conditions are given
below. The overall length of the units and total classroom time were the same
for all conditions. All students were pre- and post-tested and the same nine
students from each class (n=27) were pre- and post-interviewed in depth using
questions to reveal the causal models that they used for analyzing electricity
problems.

Pretest and Post Assessment

Students took a researcher-designed, group-administered, pre- and post-
inventory consisting of 14 multiple-choice and 2 essay questions. The



inventory answers were designed to fit with the types of models (and related
misconceptions) that students typically hold for analyzing electrical circuits
based on research by Shipstone (1985), Slotta and Chi (1999) and others. The
inventory asked students to reason about simple circuits, series and parallel
circuits, and to consider the relationship between voltage, resistance, and
current. Nine students from each class (balanced to represent low- middle- and
high-achievers) were interviewed beginning with open-ended questions and
progressing to more targeted and scaffolded questions to see whether students
would choose the scientifically accepted model if it was offered as a choice.

Intervention

Each class was taught by the classroom teacher and two researchers (who were
former teachers, one a retired fourth grade teacher with a strong science
background). All three classes used an inquiry-based, constructivist approach
tor both the static and electric circuits units. Opportunities were infused for
all students to model and discuss what they thought was going on causally at
different points in their experimentation and to revise their ideas as they
discovered new information that contradicted their earlier models. Students
kept journals and tested and discussed their models in light of the evidence that
they found.

The mini-unit on static electricity preceded the unit on electrical circuits, to
introduce the particle model of electrons and protons and attracting and
repelling, and to give students a basis for understanding the behaviour of
electrons in the circuit. It was based partly upon materials developed by AIMS
(AIMS Education Foundation, 1991) for the intermediate grades and partly on
activities developed by the researchers.

Then students participated in the Science and Technology for Children unit,
‘Electric Circuits’ (NSRC, 1991). It was modified in the following ways and
as detailed in Appendix A. For the causal models (CAU) and causal models
plus discussion (C&D) groups, RECAST activities were infused into the NSRC
unit, using role-playing and physical models such as marbles and tubing.
Students in both groups engaged in these activities to help them consider the
implications of different causal explanations for why electrons move in a
circuit. Students in the CAU group discussed the activities and the models for
electrical circuits that the activities suggested, but without scaffolding to focus
on modelling styles. In contrast, students in the C&D group engaged in
scaffolded conversations that foregrounded causal modelling styles. These

students explicitly discussed the idea that the circuit, after a transient delay,
operates according to cyclic simultaneous causality, with flow sustained by the
repelling of electrons (each electron playing the role of both cause and effect)
along the circuit. They were invited to contrast this with cyclic sequential
causality and linear causality. For instance, here is an excerpt of class
discussion:

T:  Let’s compare how cause and effect works in these two different kinds of
cyclic models. In the cyclic sequential one, what makes the electrons
move?

S1: They want to get out of the battery because of all the electrons so they go
onto the wire.

T:  Okay, and then what happens?

$2: They go along the wire till they get to the bulb and that makes the bulb
light up.

T:  Why do the electrons move in the cyclic simultaneous model?

S1: The electrons push the one in front but at the same time they are pushed
by the one before them. So everything moves at the same time.

T:  Yes, in a sense, each electron repelling is the cause of the next one but it
is the effect of the one behind it. It’s both a cause and an effect at the
same time. What you get is the whole thing turning like the chain on a
bicycle. What causes the bulb to light?

S3: When the electrons start to flow,

They also discussed what was difficult about learning each type of causality.
For instance, one student commented about cyclic simultaneous causality, ‘It’s
kind of hard to think about. The way we have to learn it is like what’s making
what happen so you think of it in a line, so then it’s really hard to think that
it’s happening all at once’ [Subject #27]. The amount of discussion that each
group (CTL, CAU, C&D) engaged in was the same, but the focus differed. As
noted earlier, the classroom time and overall length of the units was the same
for each intervention condition.

Scoring
Interview Data
The interview data from each subject were scored globally for model type

based on a scoring scheme developed from the extant research (e.g., Shipstone,
1984, 1985) and to characterize the implicit causal assumptions. The models
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aimed to capture the ‘why” behind current flow, rather than focus on ‘how’ as
is prevalent in the available curriculum materials. The first few models overlap
directly with those of Shipstone (1984, 1985) in that they begin where the
students begin (with various forms of linear models). We did not introduce
these to students; they brought these conceptions with them. Scores were
attached to each model type, reflecting the level of complexity that it involved.
When students had aspects of more than one model type, the scores were
averaged.

No causal model (Level 0) was assigned when students gave background
conditions, peripheral information or configurations only or no explanation.
Simple Linear Causal Models (Level 1) were assigned to ‘token causes,’ linear
consumer source models characterized by a single wire running from the
battery to the bulb where ‘stuff’ from the battery travels to the bulb and is
consumed (i.e., ‘The battery gives energy to the bulb’) or passes through the
bulb, but stops there with no mention of the recycling of electrons. Double
Linear Causal Models (Level 1.5) were assigned to linear models where a
second wire passively contributes to the lighting (i.e., “The other wire has to be
there or it won’t work’); or with active assistance or additive aspects where a
second wire actively contributes to the lighting (makes it stronger, fuels it, etc.)
(il.e., ‘You need two wires to get enough power to make it light'); and to
‘clashing currents’ or attraction models characterized by electricity traveling up
from both terminals and attracting or clashing to fuel the bulb (i.e., “The
electrons travel up one side and the protons travel up the other and they clash
together to make it light’). Cyclic Sequential Causal Models (Level 2) were
assigned to models characterized by electrons traveling around the circuit in a
sequential manner where they start filling the circuit at the battery and travel
to the bulb (i.e., ‘The electricity goes along the wire in a circle and when it gets
to the bulb, the bulb lights up. Then it keeps going back into the battery and
goes around again.’). Cyclic Simultaneous Causal Models (Level 2.5) were
assigned to models characterized by electricity/electrons already existing in the
circuit and simultaneously repelling each other as more electrons are repelled
onto the wire by the battery (i.e., ‘The electrons are pushed by the electrons
behind it and that makes them all move at once and makes the bulb light’).

The interviews were transcribed and then scored by two independent raters. A
Pearson Product Moment Correlation was conducted and initial agreement
was assessed at (r = .92). The differences were discussed and resolved until
there was 100% agreement.
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Whole Class Electricity Inventory

Students were assigned a general score on the inventory. Multiple-choice
questions were scored for the scientifically accepted explanation (for instance,
in a series circuit, both bulbs light at the same time). A rubric was designed
for each of the essay questions based on the underlying causal model they
revealed. For instance, one question asked, ‘If you increased the length of the
wires in a pictured circuit, would it take longer or approximately the same
amount of time for the bulb to light and why,” revealing either a sequential
notion of electron flow or a simultaneous one. Sequential models were typified
by the idea that the electricity or electrons have to reach the bulb, while
simultaneous models were typified by the idea that the electrons are already
along the wire and that the flow of electrons was responsible for the lighting
of the bulb rather than the electrons reaching the bulb. (The possibility existed
that some students would reason that there might be a transient delay even
though the process is nearly a simultaneous one. This is a rather sophisticated
line of reasoning, but one that better fits the scientific explanation than a
purely simultaneous model.)

The following kinds of statements were scored as indicating a sequential
model: It would take longer because the electrons need to flow through the
wires to get to the bulb;” or ‘It won’t take longer because the electricity makes
up the difference by traveling faster.” The following kinds of statements typified
simultaneous models: ‘It wouldn’t take longer because the wire is made up of
atoms and they get pushed as others get pushed out of the negative side of the
battery and get pulled toward the protons on the positive side;” or ‘It wouldn’t
take longer because there are atoms along the wire and as soon as you hook it
up, it begins to flow. The flow makes it light up.” Other scoring categories
included mixed models, other models, unclear, or unscoreable. Two scorers
each scored 100% of the data. Initial agreement was assessed using a Pearson
Product Moment Correlation {r = .87) on Essay 1 and (r = .91) on Essay 2.
Differences were discussed until 100% agreement was reached.

Results

How does students’ understanding compare from pre- to post-measures
depending upon intervention group? The interview data reveal whether
students achieved a deep understanding of the cyclic simultaneous model and
could apply it to analyzing simple circuits. A one-way analysis of variance
(ANOVA) on students’ pre-interview scores by group confirmed that there
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were no significant starting differences between the groups (F (2, 26) = .15, p
= .86). However, the post-interview scores showed a significant main effect of
intervention condition (F (2, 26) = 10.11, p = .0007). A Tukey Kramer HSD
multiple comparisons t-test revealed that the C&D students held significantly
different models on the post-interview than the CTL (Abs(Dif}-LSD = .34, p <
.05) and CAU students (Abs(Dif)-LSD = .06, p < .05). No significant
differences were found between the CTL and the CAU groups.

Table 2 shows the means and standard deviations for each group. While the
numbers do not appear to be dramatically different, they signal deep
differences in understanding. Students who hold a cyclic sequential model
would receive a score of 2.0 and those students who hold a cyclic simultaneous
model would receive a score of 2.5. Students with a cyclic sequential model
are likely to focus on local effects in a simple circuit, to reason that the circuit
is empty to begin with, and to make erroneous predictions about parallel and
series circuits, Ohm’s Law and so forth. Students with a cyclic simultaneous
model reason at a systems level and make correct predictions about parallel
and series circuits, Ohm’s Law and so forth. Figure 1 shows that all but one
of the students in the C&D group held cyclic simultaneous models on the post-
interview. Notice the smaller standard deviation in the C&D group, suggesting
that there is less variation in student performance when all students are given
access to the underlying causality.

Means and Standard Deviations forTl:‘(:)slte iflterviews by Intervention Condition
Intervention condition ~ Number Mean Standard deviation  Standard error of mean
1 = Control 9 1.67 37 12
2=CAU 9 1.94 51 17
3=C&D 9 2.44 11 .04
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OBackground Conditicn
OSimple Linear

Double Linear

B Cyclic Sequential

B Cyclic Simultanecus

Figure 1. Number of students using each model type on post-interview by intervention
condition (n=27).

Note that learners were not just giving back what they were taught. The
assessments asked students to apply what they had learned to situations not
directly addressed in the instruction, novel circuits, and probed for typical
misunderstandings not directly addressed in the instruction.

Related to the finding of less variance in the C&D group, it appears that the
C&D intervention benefited all of the students in the group regardless of
achievement level. Regression analyses plotting pre-interview scores against
achievement level showed that achievement level was a significant predictor of
students’ pre-interview scores (F (2, 27) = 6.23, p = .007), with the lowest level
students doing the least well, as would be expected. However, a regression
plotting group and achievement level against post-interview scores showed that
intervention group (E (2, 27) = 11.2, p = .0004) was a significant predictor of
post-interview performance, but that achievement level was not (F (2, 27) =
2.3,p=.1238). In the C&D group, nearly all of the low achievers reached the
most sophisticated model.
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The inventory data gave a measure of whether students applied the models that
they learned to reasoning about the circuit to overcome typical misconceptions,
such as the idea that the circuit is initially empty or that current is not
conserved. A one-way analysis of variance (ANOVA) by intervention
condition on the pre-inventory scores confirmed that there were no significant
starting differences between the groups (F (2, 63) = .0356, p = .9651). Post-
inventory scores revealed a significant main effect of intervention condition (F
(2,65) =5.14, p = .008). C&D Students did significantly better than the CAU
(Abs(Dif)-LSD = .11, p < .05) and CTL students (Abs(Dif)-LSD = .38, p < .05)
as revealed by a Tukeys HSD. The C&D group outperformed the others by
nearly one standard deviation. There were no significant differences between
the CAU group and the CTL group. Students in the C&D group gained on
average 5.6 points, one standard deviation above the CTL group at 2.9 points
and close to one standard deviation above the CAU group at 3.3 points.

Table 3
Inventory Gain Scores by Intervention Condition
Intervention condition  Number Mean Standard deviation Standard error of mean
1 = Control 21 2.88 1.81 .39
2=CAU 22 3.34 2.70 .57
3=C&D 23 5.59 241 50

The overall results suggest that students who experienced RECAST activities
and explicit causal discussion made the greatest gains in the type of model that
they used to explain simple circuits and in overcoming typical misconceptions.
It appears that the pattern of causal interactions was complex enough and
counterintuitive enough to require explicit discussion of the RECAST activities
for them to have impact.

EVIDENCE FROM AN INTERVENTION CONCERNING DENSITY

Earlier we discussed the complex causality involved in the concepts of density
and sinking and floating. To summarize, under Mechanism, density is not a
directly observable property and explanations of density in terms of atomic

Dimensions of Causal Understanding 147

theory are even more removed from experience. Under Interaction Pattern,
density depends on the interaction of weight and volume, whereas young
learners tend to focus on one variable at a time. We designed an experiment
using RECAST activities and causal discussion to introduce students to the
underlying causal structure of density.

Method
Subjects

The subjects were eighth graders (n=91) from a middle school in a
predominantly middle-class suburban community outside of Boston. The
students were from four science classes taught by the same science teacher. The
students had science class five days per week for approximately 45 minutes

each day. '

Procedure

All of the classes began the year with a unit on the nature of matter, after the
teachers and researchers agreed that it was a useful prerequisite for understanding
density. A unit on density and the role of density in sinking and floating followed.
Prior to the Density Unit, we tested students’ understanding with a pre-inventory
of 10 assessment questions (6 open-ended assessment questions designed to elicit
students’ models of how causality behaves in density-related phenomena and 4
multiple choice questions focused on key misconceptions.).

Two classes were control classes (CTL). They were taught a unit called Basic
Density. The unit was inquiry-based, involved a lot of modelling, Socratic
discussion, and use of computer simulations. Two other classes participated in
a causal activity plus discussion (C&D) intervention and were taught a unit
called Causal Density. The Causal Density was essentially the same as the
Basic Density unit except that it included RECAST activities and causal
discussion while Basic Density did not. The units were designed to be the same
length so when C&D classes had RECAST activities and causal discussion, the
CTL classes participated in similar activities (without the causal focus) that are
typically a part of density units. For instance, when C&D classes
experimented with making soda cans sink or float by adjusting the density of
the liquid that the cans were floating in, CTL classes created an object that
would sink, float, or suspend in water by analyzing its density relative to water
and figuring out what materials to add to it.
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Following the density unit, students took a post-inventory of 10 questions as
above. We also interviewed three students from each class (n = 12) (balanced
groups chosen by the teachers to represent high, medium, and low achievers),
collected relevant work samples throughout the unit, and videotaped
classroom discussion for later analysis.

Pre and Post Assessment

Students were pre- and post-tested with an Open-Ended Inventory of 10
questions designed to assess understanding of density and its role in sinking
and floating. Students had opportunities to reveal that they understood the
relationship between mass and volume, the microscopic material causes of
density, that as temperature and pressure change density is dynamic, and the
relational causality involved in both the mass/volume relationship and the role
of density differentials in sinking and floating. For instance, one question
asked students to explain differences in felt weight between two objects of the
same volume. Another question asked students to show the possible outcomes
when an object is dropped into a liquid to see if it will float and to explain
each. They were also asked to answer questions that students typically have

misconceptions about, such as what happens to the density when you cut an
object in half (Smith, Grosslight, Davis, Macklin, Unger, Snir, & Raz, 1994).

Intervention

The Basic Density and Causal Density Units each contained 15 lessons
designed to teach about density and the role of density in sinking and floating.
The units took five weeks to teach. Both units included work with
Archimedes’ Laboratory, a computer simulation program by Snir, Smith,
Grosslight, Unger, and Raz (1989) designed to teach density as a ‘dots per box’
model. The lesson sequence for the units, specifying what was taught to each
group in each lesson can be found in Appendix B. All four classes were taught
by the same teacher and by a researcher, who was a former science teacher.

The Causal Density Unit included RECAST activities and discussion aimed at
helping students achieve the following understanding goals about the nature of
causality as it relates to the causes of density and the role of density in sinking
and floating. One goal focused on the causal mechanism for differences in
density, in particular, that density as a causal mechanism is non-obvious, and
the causes of differences in density are non-obvious because they occur at the
microscopic level (with the exception of some cases of mixed densities). Part
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of this was some sense of what causes differences in density at the microscopic
level (such as atomic mass, atomic bonds, etc.). We also wanted students to
understand that density is dynamic because some of the causes of density are
dynamic. While atomic mass is constant, the bonds between atoms and
molecules are affected by variables such as temperature and pressure.
Unfortunately, middle school textbooks often state ‘density cannot change,’
fostering the notion that we assign a number to the density of an element
‘under standard conditions’ and that the number doesn’t change. The two
ideas tend to be confused by both students and textbook writers, leaving
students with the belief that density is static and making it difficult for them to
understand a vast range of everyday phenomena.

The second understanding goal concerned the relational interaction patterns
that characterize density as mass per unit volume and the role of density in
sinking and floating. Typically, people assume a linear causal interaction
pattern and say things like ‘dense objects sink’ or ‘heavy objects sink.’
However, the scientifically accurate model is a relational causal interaction
pattern. Whether something sinks or floats depends on what it is sinking or
floating in and the relationship of the densities.

Scoring

A rubric was designed to score each answer by the level of scientific correctness
and the complex causality it represented. For instance, one question asked
students to show the possible outcomes when an object is dropped into a liquid
to see if it will float and to explain each. The following scores were assigned.
No response was scored as Level 0. Repeating information given in the
problem or giving examples of things that sink or float was scored as Level 1.
Weight attributions, token uses of density, or merely stating that hollow things
float and solids sink were scored as Level 2. Attributing sinking or floating to
material kind or to air particles inside a material were scored as Level 3. A
focus on the density or crowdedness of the material or on the density or
crowdedness of the liquid was scored as a Level 4 (including mixed density
where the density of air plus the density of the material gives a total density).
A focus on the density or crowdedness of the material in relation to the density
or crowdedness of the liquid was scored at Level 5.

One scorer scored 100% and a second scorer scored 25% of the data and inter-
rater reliability was assessed using a Pearson Product Moment Correlation (r =
.85). The scoring rubric was adjusted and clarified to account for categories
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of differences (without discussion of individual cases) resulting in an improved
Pearson Product Moment Correlation (r = .91). Differences were discussed
until 100% agreement was reached.

Results

A one-way analysis of variance (ANOVA) on students’ pre-interview scores by
group confirmed that there were no significant starting differences between the
groups (t (89) = -1.72, p = .09). However, given that numbers were
approaching significance, pre-test scores were entered as a covariate in the
regression analysis below.

Both groups of students showed significant improvement on the post-test as the
result of instruction (across groups: t (86) = -8.69, p <.0001; within groups:
CTL = ¢ {45) = -4.80, p <.0001 and C&D =1 (40) = -7.98, p < .001). This is
not surprising because both units were designed around best practices. A
multiple regression model plotting intervention condition and pre-test scores
against pre- to post-test gains yielded an R2 = .33 and the Effect Test showed
significant main effects of intervention condition (F (1, 87) = 12.73, p <.0006)
and pre-test score (F (1, 87) = 34.99, p < .0001). The causal students
outperformed the control students with respective least squares means of 11.23
and 5.56 (SD = 8.5).

From a developmental perspective, one might argue that students with lower
starting scores are less ready to learn the more advanced models. However, the
analysis also revealed a negative correlation between pre-test scores and gain
scores (r = -.48) with lower pre-test scores correlating with higher gain scores.
(See the prediction formula in Figure 2.) This makes sense in that there is a
ceiling on how much one can gain, so those who start lower have more to gain.
It also fits with our hypothesis that there are certain conceptual leaps that are
hard for students to make, for instance moving from a linear to a relational
model. Those who start lower can gain a greater amount before having to
surmount the hurdle of those conceptual challenges.

For another way of looking at the data, we calculated the percentage of
students in each intervention condition who ended up with a relational causal
model. This measure focuses directly on the hurdle of leaving a linear causal
model behind completely and adopting a fully relational model. Three
questions on the assessment directly assessed whether students structured their
explanation with a relational causal model. Students were assigned one point
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for each relational model that they used. A multiple regression model plotting
intervention condition and pre-test relational model use against pre- to post-
test gains in relational model use yielded an R2 = .35 and the Effect Test
showed significant main effects of intervention condition (F (1, 87) = 7.62, p <
.0071) and pre-test score (F (1, 87) = 40.75, p < .0001). The causal students
outperformed the control students with respective least squares means of 1.31
and .81 (SD = .99). Figure 3 illustrates the percentage of students in each
condition who shifted from using linear to relational causal models on their
pre- to post-test. Here ‘use of relational causal model’ was defined as
employing relational causality on at least two of the three questions.

Intervention

match Condition
Intercept = 19.62 + when Control
- 0.55 x total pretest
5.66 when Causal

Figure 2. Prediction formula detailing parameter estimates (intervention condition and
interview version) to estimate density gain scores.

20
80
70 7
60411

Percentage of 5
Students in
Each Group 40

30
20
10

0

OLinear
H Relational

Control- Control- Causal- Causal
Pretest Post-test Pretest Post-test

Model Type

Figure 3. Percentage of students using each model type on pre- and post-test by
intervention condition (n = 91).



The density results suggest that students significantly benefited from the
infusion of RECAST activities and causal discussion into their science unit.
However, the results are not as dramatic as in the electricity research: students
in the control classes also saw significant gains and 61% of them (as compared
to 86% of the causal group) used relational causal reasoning on the post-test.
It appears that the pattern of relational causality may be less counterintuitive
to students than those in electricity, some of them gleaning it from instruction
that does not specifically focus on it.

Most of the assessment questions that we used were real-world type questions
that blended the different dimensions of causality, so it was not possible to
discern which dimensions were most impacted by the interventions. However,
we found in both studies that students felt comfortable talking about
interaction patterns and often spontaneously mentioned them and/or
contrasted more complex forms to simple linear reasoning. Students also
quickly picked up on the term ‘token cause’ and pushed not only themselves,
but also their peers and sometimes their teachers, for more in-depth
explanations when they asked a question and got back what they considered a
token cause. Whether these aspects of the dimensions are inherently most
easily fostered or the intervention was in some way more effective addressing
these is an open question that warrants further study.

In summary, the foregoing studies offer support for the hypothesis that
teaching students about more complex causal structures improves their ability
to reason about topics for which they typically have misconceptions. This is
corroborated by findings in our research on other topics such as ecosystems,
pressure, and heat and temperature (e.g., Basca & Grotzer, 2001; Grotzer,
2004; Grotzer & Basca, 2003). Across the topics studied, students in the
causal interventions demonstrated deeper understanding and fewer
misconceptions. They analyzed problems at a more systemic level, made
reference to causal models, and contrasted and critiqued the relevance of
different causal forms to specific concepts. For example, in the study of
students’ understanding of ecosystems, students in the causal interventions
detected significantly more connectedness in the ecosystem relationships and
demonstrated a stronger grasp of decomposition and the non-obvious
mechanisms that cause it (Grotzer, 1993; Grotzer & Basca, 2003). In air
pressure, students who engaged in causal discussion plus a systemically-
focused air pressure curriculum experienced greater conceptual change
towards relational causal models than students who engaged in only the
systemically-focused curriculum (Basca & Grotzer, 2001). In heat and

temperature, students in causal intervention groups made substantive gains on
understanding the interaction patterns involved in heat and temperature
(domino, re-entrant, and linear causal structures) (Grotzer, 2004).

CONCLUSION

We began with a puzzle: magic was easier to understand than science. A likely
reason was not hard to find. The baftling accomplishments of a master
magician, once explained and demonstrated, occupy the everyday world of
commonsense causality. Even if a trick is complicated, each element has a
comforting familiarity. In contrast, a scientific explanation that might even have
fewer principal elements would often be more complicated in other senses—
invoking an underlying mechanism; interactive, cyclic, or constraint-like

relations among factors; probabilistic elements; and emergence of various kinds.

Typical science instruction does little to prepare learners for this complexity.
As noted earlier, science instruction characteristically foregrounds (1) learning
and applying specific models (for instance, Ohm’s Law for a simple standard
circuit), and, next to that, (2) learning and applying modelling systems (for
example, Ohm’s Law for any circuit), but rarely (3) learning and reusing
modelling styles (constraint-system models in general for instance). Unfamiliar
and uncomfortable with complex styles of causal modelling, learners often find
themselves baffled and frequently backslide after a little progress.

QOur tests of the complex causality framework found support from studies of
students’ initial conceptions, both prior to and after conventional instruction.
The causal models implicit in students’ explanations tend to be quite simple by
the measure of the four dimensions of complex causality. Moreover,
interventions designed to teach characteristically troublesome science concepts
in a way that brought out complex causality yield considerable gains in
students’ understanding, compared with control groups receiving ‘best
practices’ inquiry-oriented instruction without attention to complex causality.

At the beginning of this article, we asked: what makes some science concepts
particularly hard to understand, not just requiring ‘a little more instruction’?
The following conclusions, all related to modelling styles, seem warranted.

1. What is not so challenging is complexity of scientific theories in the sense of
daunting intricacy—at least not scientific theories usually found in the K-12
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curriculum. Compare, for example, the intricacy of a foreign language with
its many rules, many exceptions, and huge vocabulary with the intricacy of
most scientific theories. The foreign language is far more elaborate.

One source of difficulty lies in concept-specific contrary intuitions such as
those identified by diSessa (1993). We certainly acknowledge concept-
specific intuitions are a problem. However, we do suggest that learners
are in a better position to challenge such intuitions with a good sense of
complex causality. Indeed some of these concept-specific intuitions can
pull against students’ ability to grasp the underlying causal structure. For
instance, we have found that some students who reveal an underlying
relational causal model in most of their reasoning about air pressure still
lapse back to a linear model when they reason about hurricanes and the
powerful winds involved (Ritscher, Lincoln, & Grotzer, 2003).

A further and serious source of challenge, we propose, is unfamiliarity
with modelling styles toward the complex ends of the dimensions
introduced above. Causal reasoning about the everyday world does little
to prepare students for dealing with underlying mechanisms, constraint-
system models, highly probabilistic phenomena, or emergent effects.

The challenge is even greater when more complex modelling styles
contradict rather than extend simpler ones. This generates particular
resistance, because students have to abandon their initial thinking styles,
styles that are fluent and comfortable because everyday explanations
typically employ them.

Many scientific theories call for what Frederiksen and White (2000) have
called ‘multimodel thinking’—coordinating multiple levels or explanatory
perspectives that may involve different modelling styles. Students find
moving between and coordinating levels to be very difficult (Chi, 2000;
Wilensky & Resnick, 1999).

Awareness and appreciation of complex modelling styles benefit from
inquiry skills that are themselves often underdeveloped, and gain from
ways of teaching and learning that give inquiry a significant place. As
noted earlier, in at least some cases learners in principle could easily
challenge their own overly simple models, if only they looked for gaps in
the causal story or considered readily constructed counter-examples; yet
they do not. Inquiry-oriented instruction fosters treating particular
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models as provisional, under test, and subject to revision or replacement,
an attitude quite removed from students’ tendency to want to know the
facts (e.g., Clement, 1993; Collins & Ferguson, 1993; Frederiksen &
White, 2000; Perkins, 1997).

7.  However, good inquiry-oriented instruction by itself is not sufficient to
fully develop particular complex causal understandings and students’
general sense of complex causality. As demonstrated in the teaching
experiments reviewed earlier, it needs to be coupled with direct attention
to complex causality, in the context of the particular target concepts.

While the research reviewed here supports the dimensions of complex
causality, further important questions remain part of our ongoing research.
For example, when students get acquainted with more complex modelling
styles in the context of one science topic, can they transfer their repertoire to
other science topics that seem quite different on the surface? Transfer of
learning across different surface situations is one of the abiding challenges of
pedagogy (see e.g., Bransford & Schwartz, 1999; Detterman & Sternberg,
1992; Salomon & Perkins, 1989). Anecdotal evidence from our intervention
studies suggests that students do show some transfer, particularly when the
instruction fosters reflective abstraction, and we are pursuing research in this
area. However, even if transfer turns out to be limited, the modelling styles still
would be important for deepening students’ understanding, albeit on a case-by-
case basis as in the studies of electrical circuits and density.

If the dimensions of complex causality hold up, even in considerable part, they
offer significant insight into the difficulties learners encounter. Moreover,
remember how in the opening anecdote learners find science more baffling
than magic. It doesn’t have to stay that way. Helping learners to achieve a
better understanding of causal modelling styles as they study a range of
concepts and topics in science could work a little magic in the classroom!
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Appendix A: Lesson Descriptions for Simple Circuits Units:

Lesson 1: Thinking About Electricity

Students in all three groups discussed what they already know about the nature of
electricity, how it is used, safety issues to consider, and how their lives would be
different without it.

Lesson 2: What Configurations Work to Light a Bulb?

Students in all three groups experimented with different battery and bulb conflguratlons
to see which ones would work. They found four different configurations that worked.
They also found that it is possible to light the bulb with just a wire, battery, and bulb.
They discovered that linear arrangements do not work to light the bulb.

Lesson 3: What is the Inside of a Light bulb?

Students in all three groups examined light bulbs that had been taken apart by the
teachers and researchers. They observed how the wire that runs through the bulb goes
in at one side of the base and comes out at the bottom of the base. They diagramed the
parts of the bulb and considered how the places where the wire entered and exited -
corresponded to their findings in lesson two. They examined different types of light
bulbs at school and in their homes.

Lesson 4: What is the Underlying Causality of a Simple Circuit?

All of the students shared, discussed, and critiqued their models for why the simple
circuit works. They considered what the circuits that worked had in common. The
NSRC (1991) unit focuses on having students detect the configurations that work but
not the underlying models for ‘why.” The unit was modified so that students in all
groups shared their ideas for why they thought certain configurations worked and
engaged in simulations to illustrate the models that students presented where they
pretended to be electrons and protons along the circuit. Students in the CAU and C&D
groups were introduced (though activities or activities and causal discussion) to a cyclic
simultaneous model for explaining electrical flow at the particle level as one of the
possible models to consider. Some points of discussion in all three groups included that
electrons are conserved in a circuit; that the bulb lights when electrons flow in the
circuit and that flow requires a continuous ‘push.’

Lesson 5: What Does the Battery Do?

A lesson was added for all students to the NSRC unit to consider the role of the battery
in a simple circuit (without capacitors). Students observed that one side is positive and
one is negative. The teacher took a battery apart. They discussed the role of the battery
as separating electrons and protons (and accumulating ‘charge’ at the ends of the
battery). The students in the causal groups did activities {(and the C&D group engaged
in discussion) to help them think about it in terms of the ‘push’ (though some students
saw it as pull toward the protons at the positive end of the battery) that sustains flow
in the cyclic simultaneous model.

Lesson 6: Building and Testing Circuits

All students experimented with building a circuit using a bulb holder and a battery
holder, considered which parts of the circuit were important, and engaged in trouble-
shooting circuits that didn’t work for various reasons as per NSRC lessons five and six.
Students engaged in conversation to relate what they were finding to their models for
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why circuits work. Students in the causal discussion group explicitly discussed these in
terms of a cyclic simultaneous model.

Lesson 7: What are Conductors and Insulators?

All students experimented with objects and tried to include them in the circuits to
consider different levels of conductivity in their circuits. They then discussed
conductors and insulators and related it back to what they learned about conduction
and insulation in a unit of static electricity. The goal was to prepare students to think
about resistance.

Lesson 7: What are Conductors and Insulators?

All students experimented with objects and tried to include them in the circuits to
consider different levels of conductivity in their circuits. They then discussed
conductors and insulators and related it back to what they learned about conduction
and insulation in a unit of static electricity. The goal was to prepare students to think
about resistance.

Lesson 8: Experimenting with Filaments: Why Does the Bulb Light When There is
Flow?

Students in all groups experimented with different types of filaments and varied width,
material type and length to observe the outcomes. Students were taught to think about
resistance as being on a continuum between conductivity and insulation. Students in
the C&D group discussed it in terms of a passive type of causality.

Lesson 9: Hidden Circuits

All students engaged in the NSRC lesson nine on hidden circuits where they had to use
a circuit tester to test where there was a complete circuit and where there was not.
Lesson 10: Deciphering a Secret Language

Students in all groups were taught to decipher electrical circuit diagrams and created
drawings of circuits that they built as per lesson ten in the NSRC unit.

Lesson 11: What Happens When Bulbs or Batteries are in Series or Parallel?

Students in all groups experimented with building series and parallel circuits with
multiple bulbs or batteries. They made predictions about what they expected would
occur and then observed what actually happened when they created each circuit.
Students were asked to draw models of what they thought was going on and why. The
students shared, discussed, and critiqued their models for explaining what happens in
the case of parallel and series circuits. Students in the causal groups critiqued the cyclic
simultaneous model along with other models put forth by the students.

Lesson 12: What do Switches do?

Students in all groups experimented with adding switches to their circuits and
predicting and testing what happens. Students drew models of what they thought was
going on and why. They discussed what the switch did in terms of their models for how
a circuit works. The causal discussion group also considered the role of a switch in the
cyclic simultaneous model.

Lesson 13: Constructing a Flashlight or Wiring a Miniature House

Students in all groups chose to either create a flashlight or wite a miniature house to use
what they had learned about circuit configurations that work.
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Appendix B: Lesson Descriptions for the Density Units:

Lesson 1: What are Volume, Mass, and Weight? How Do We Distinguish Each One?
Students in both groups were taught how to distinguish the concepts of volume, mass,
and weight. They explored why it was difficult to distinguish between these concepts,
Computer simulations created in Interactive Physics allowed them to explore the
differences between mass and weight on different planets.

Lesson 2: How Can We Measure Mass and Weight?

Students in both groups were taught how and why mass is to measured with a spring
scale. Mass is a measurement independent of gravity, it always involves a comparison.
Students were taught that they find the mass of an object by finding out how many
grams it takes to balance the object on a pan balance.

Lesson 3: How Can We Measure Volume?

Students in both groups deduced how to measure the volume of regular and irregular
objects and practiced measuring them. They learned how to use the displacement
method.

Lesson 4: Why Do Some Objects of the Same Volume Differ in Mass?

Students in both groups considered the problem of how objects made of different
materials that have the same volume could have different masses. They compared
different objects with the same shape and volume with different masses and drew
models of what they thought might be going on.

Lesson 5: How Do We Calculate Density?

Students in both groups graphed out the relationship between mass and volume of
different objects to find out that density can be deduced by knowing the relationship
between mass and volume. They were taught that density is measured in units; g/cm3
[grams per cubic centimeter] or g/ml [grams per milliliter] and that of density, mass, and
volume, if you know two of the variables, you can figure out the others. Students in
the Causal Group were taught to think about density as a relational causality as
compared to a linear causality. They were taught that in relational causality, the
relationship between two variables accounts for the outcome, not one variable or the
other. Changing the relationship in anyway changes the outcome.

Lesson 6: How Do We Calculate Density?: A Reinforcement Lesson

Students in both groups used a computer simulation called Archimedes Laboratory to
learn how calculations of density relate to visual models. They also discussed the
statement in their book, “The density of a liquid can be measured...” and whether the
word ‘measured” is a good or bad choice. They debated whether density can be directly
measured or has to be inferred.

Lesson 7: Why Do We Say Density is a Property of a Particular Kind of Matter?
Students in both groups made predictions about how certain transformations to matter
(such as cutting or changing shape) might affect density and then calculated the density
to realize that density is not affected by the size or shape of the object. They learned
that specific densities are assigned to specific elements and that the density of a
substance can be used to help identify that substance.
Lesson 8: Do Liquids and Gases have Density Just as Solids Do?

Students in both groups learned that liquids and gases also have density—that all matter
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has density. They figured out how to calculate the density of liquids and gases. They
found the density of water and a number of other liquids.

Lesson 9: What are Some Useful Models of What More or Less Dense Might Look
Like?

Students in both groups analyzed a set of different models for visualizing density and
generated a number of their own. They were taught that one way to think about
density that students often find helpful is to think about how crowded or packed a
material is, Many models use various forms of crowdedness (or more or less packed in)
as a way of conveying density.

Lesson 10: What Causes Differences in Density?: The Role of Atomic Mass

Students in the causal intervention were taught about the micro causes of density as an
underlying causal mechanism and a way to conceptualize it despite its non-obvious
nature. They learned that density has multiple contributing causes and that one cause
of differences in density is the masses of the atoms (the number of protons, neutrons
and electrons that the atoms are made up of). This cause applies equally to all states of
matter. Students in the control condition continued to generate, explore and critique
different models for helping them to visualize density as begun in the previous lesson.
This included discussion of how the particles or molecules might be more crowded.
Lesson 11: What Else Causes Differences in Density?: The Crowdedness of Atoms and
Molecules due to Structure, States, and Conditions

Students in the causal intervention were taught that another contributing cause to
density at the micro-level (an underlying causal mechanism that is non-obvious) is the
spacing between atoms due to the strength and structure of atomic bonds between the
atoms and the spacing between atoms, molecules, and compounds due to states,
structure, or conditions: how far apart the atoms, individual molecules, or molecular
compounds are spread with other molecules (such as air or water) or vacuum in
between due to various states, structure and/or conditions. Students in the control
condition engaged in an activity called ‘The Penny Lab’ designed to help students realize
that density is one means of figuring out the composition of an object and they
considered pennies that had differences in density and what that implied for their
composition.

Lesson 12: What Does it Mean for Density to have Multiple Contributing Causes?
Students in the causal intervention were taught that density has multiple contributing
causes. Not every cause is involved in every situation where density is in play and that
you can’t compare objects by using just one of the causes alone. You also can’t assume
that every cause contributes to every situation. They explored situations where this was
so both in science and social content. Students in the control condition completed ‘The
Penny Lab’ activity from the previous lesson.

Lesson 13: Can the Density of a Solid Change?/ How does Density Change in Liquids
and Gases?

Students in the causal condition heated a ball and ring to see that density is not static;
it can change and analyzed what happened using the micro-causes of density and the
relationship between mass and volume. They were taught that changing the
temperature (and pressure) can change the density of a substance and that solids (and
liquids) expand a little when heated. Gases expand a lot when heated. Students in the
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control condition were taught that numbers are assigned to elements that represent
‘standard density’ but that this applies only to standard conditions. Each group
considered the density of sets of elements, with a relational focus in the causal group
(“Which element is denser than the other?’) and a typical, definitional focus in the other
(“What is the density of gold at standard temperature and pressure?’)

Lesson 14: How Does Density Affect Sinking and Floating?

Students in the causal group did a RECAST activity to help them realize that when
considering whether an object will sink or float in a liquid, you have to compare the
density of the object to the density of the liquid. They discussed linear and relational
causal models and they layered liquids to see the relational density. Students in the
control condition did an activity to learn that an object made of a substance with a
density greater than 1.0 will sink in water, an object made of a substance with a density
less than 1.0 will float in water, and an object with a density of 1.0 will suspend in
water, controlling for other variables.

Lesson 15: How Does Density Affect Sinking and Floating?: A Reinforcement Lesson
Students in both conditions used Archimedes Laboratory to experiment with sinking -
and floating. Students in the causal condition had their experimentation guided and
supported by a sheet that helped them to interpret what was happening through the lens
of relational causality while students in the control condition used an unmodified
version of the program (but also had a written guide sheet for their work).

Lesson 16: Manipulating Variables: What is Going on to Explain Sinking or Floating?
Students in the causal condition manipulated the variables in the relationship that
determines what sinks or floats to modify the outcomes. Students found that Diet Pepsi
floats while regular Pepsi sinks and they discussed why. Then they generated ideas for
and modified the liquid it was floating in to make both sink. Students considered the
exploration and the models that they generated to explain it through the lens of
relational causality and the dynamic nature of density. Students in the control condition
experimented with objects to see which would sink and which would float in water
including some that are counterintuitive. They then deduced information about the
object’s density.

Lesson 17: What Happens When You Mix Densities?

Students planned and created objects that would suspend by using mixed density.
Students in the causal condition analyzed and planned their objects through the lens of
relational causality. Students in the control condition analyzed and planned their object
to have a density similar to that of water (1 g/ml)
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