Validation of an instrument measuring student complex causal assumptions

M. Shane Tutwiler, Tina Grotzer, Meredith Thompson, Amy Kamarainen, Shari Metcalf, Chris Dede

Harvard Graduate School of Education

Abstract
In this study, we present the validation evidence of a survey designed to assess student complex causal assumptions. We found that student responses could be explained by a two level measurement model, with responses to the complex causal domains of action at a distance, change over time, and non-obvious causes loading on a higher order factor, as well as a construct of agent-based causality. Reliability measures of the assessment when given before the instrument were adequate (alpha=0.71), and students showed expected gains in the measures after using a multi-user virtual environment (d=0.47, p<.001).

Results

<table>
<thead>
<tr>
<th>Study 1</th>
<th>Study 2</th>
<th>Study 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.61</td>
<td>0.70</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 1. Reliability measures of pre-assessments across three validation studies of the CAUSE

EcoXPT Overview
EcoXPT is a NSF-funded continuation of the IES-funded EcoMUVE multi-user virtual environment. In the EcoMUVE, students worked together make observations and collect data in an effort to solve an ecosystems science related mystery (Metcalf, et al., 2011). In EcoXPT, students can also conduct experiments in order to better understand various causal mechanisms at play in the ecosystem.

Causal Assessment of Understanding in Systems & Ecosystems (CAUSE)
One specific dimension is student understanding of the importance of various complex causal attributes of systems. In past studies, open-ended assessments have been iteratively coded to measure this domain (e.g., Grotzer et al., 2013). These open-ended prompts were recoded as Likert-type items (scale: 1-5) assessing the degree to which students believe it is important to attend to specific causal attributes in an ecosystem when solving a mystery about dead frogs. Face and content validity were established by expert reviewers. Results of assessments of construct validity follow.

Conclusions
Evidence suggests that the CAUSE instrument measures dimensions of middle-school student understanding of the importance of identifying complex causal attributes when tasked with solving an ecosystem-related mystery. Future research should explore the relationship between this measure and student content knowledge and affective state along important measures such as self-efficacy.

Works Cited

Acknowledgements
The research reported here was supported by the National Science Foundation through Grant 1416781 to Tina A. Grotzer and Christopher J. Dede. The opinions expressed are those of the author and do not represent views of the National Science Foundation.