“There Must be a Cat Nearby”:
Kindergarteners’ Reasoning about Action at an Attentional Distance

S. Lynneth Solis, Tina A. Grotzer, Kaley N. Curtis, Rosemarie G. Sese
Harvard University

Evelyn Y. Chen
Taipei American School

To be presented at the American Educational Research Association (AERA) Conference
Washington, D.C., April 11, 2016
“There Must be a Cat Nearby”:
Kindergarteners’ Reasoning about Action at an Attentional Distance

S. Lynneth Solis, Tina A. Grotzer, Kaley N. Curtis, Rosemarie G. Sese
Harvard University

Evelyn Y. Chen
Taipei American School

Abstract

Action at a distance describes causal relationships in which the causes act at a distance from the effects (e.g., Spelke, Phillips, & Woodward, 1995). Many concepts in life and in science education involve action at a distance, such as a remote control activating a television or a magnet repelling another magnet without touching. Some forms occur within the same attentional frame, such as two magnets on a table, making it possible to observe the covariation relationships between them. Others occur at an attentional distance, obscured by space or other variables that make it difficult to perceive their covariation. This led Grotzer and Solis (2015) to introduce the term, action at an attentional distance (A@AD) to underscore the distinction. Given the importance of covariation to discerning causal connections, A@AD introduces considerable complexity in recognizing the possibility that particular causal relationships exist. It is particularly relevant in ecosystem science in which the causal dynamics unfold over vast distances; for instance, an earthquake in Japan causing a tsunami in Hawaii. Recognizing that A@AD is possible and that it is difficult to discern is important to achieving understanding of ecological systems. To inform instructional design that supports even young students in understanding A@AD, this study characterized kindergarteners’ reasoning about A@AD phenomena within familiar and unfamiliar contexts.

Theoretical Framework

Covariation is a primary mode of causal induction and has been extensively studied in the developmental research, historically (e.g., Bullock, Gelman, & Baillargeon, 1982; Shultz & Mendelson, 1975; Siegler, 1976) and more recently in the form of Causal Bayes Nets and the statistical summing across of instances to discern possible connections (e.g., Gopnik & Schulz, 2007). Modes of causal induction are sometimes viewed as pitted against one another, but given real world complexities such as action at an attentional distance, they may interact in various ways to work in support of each other. Therefore, how learners reason about contexts in which spatial and temporal factors separate causes and effects as in the case of ecological science and environmental studies is an important research question that can inform instructional design.

Studying students’ default assumptions concerning A@AD can support the design of instruction that scaffolds their awareness that local actions can have distal effects and vice versa. Previous research (Grotzer & Solis, 2015) found that second through sixth graders typically generated local explanations across a variety of problem contexts when given interview tasks that could be responded to with proximal or distal explanations. When students were able to generate distal explanations, it hinged upon having content-relevant mechanism knowledge that
enabled them to build the causal connection. This suggests that the concept of A@AD is within
the repertoire of elementary students if they can imagine a mediating mechanism.

A question in relation to the above study is whether students recognize A@AD as a type
of causal pattern in the absence of mechanism knowledge. In the extant findings, infants
expressed surprise when observing action at a distance (Spelke, Phillips, & Woodward, 1995) in
which cause and effect were within one attentional frame. Older children presumably would have
had opportunities to witness and test action at a distance concepts within the same attentional
frames, such as turning on an overhead light, making magnets move on a table, or playing with
their shadows at recess, so they may have generalized a pattern of action at a distance as a
possibility that they may extend to action at an attentional distance phenomena.

This study investigated whether kindergartners expressed the belief that action at an
attentional distance is possible. It investigated the following questions:

1. Do young students accept action at an attentional distance as a causal explanation when
 the cause and its effect are not both perceptible in the same attentional set due to spatial
distance or barriers?
2. Do young students generate responses that present action at an attentional distance as a
 possible causal explanation?
3. If so, what are the features of events or phenomena that students accept as action at an
 attentional distance? If not, what are the features of events or phenomena that students
 reject as action at an attentional distance?
4. What are the reasoning patterns that enable students’ ability and inclination to accept
 action at an attentional distance and produce responses that explain it?

A series of interview tasks that involved increasing levels of attentional distance in both familiar
and unfamiliar contexts were developed to address the above research questions.

Methods

Participants

The sample consisted of 25 kindergarten students (13 female). Students attended a public
charter school in an urban district of the Northeastern United States, where 95% students are
students of color and 80% receive free or reduced lunch.

Tasks

It was important to understand how students’ familiarity with phenomena influenced their
ability to reason about a complex causal pattern such as A@AD. Thus, prior to data collection
we conducted naturalistic classroom and playground observations to identify experiences related
to A@AD phenomena that occur spontaneously in children’s school environment. Understanding
the nature of students’ day-to-day experiences informed the design of both familiar scenarios and
scenarios that incorporated unfamiliar components. Both familiar and unfamiliar scenarios were
employed to allow a comparison between instances in which students likely had prior knowledge
to refer to and instances they likely did not. Knowledge of students’ daily experiences also
allowed us to design scenarios that were developmentally appropriate for participants in this age range.

Students participated in two sessions in which they were presented with the different scenarios and were asked to describe their understanding of the causality involved. To make the scenarios easily accessible and the interview feel as natural for students to respond to as possible, they were presented in a conversational manner. Scenarios involved a protagonist who had informed the interviewer about a phenomenon. The interviewer then asked students to share their ideas about the veracity of the protagonists’ claims. In the first session, the hypothetical protagonist was someone about the students’ age (a first grader) to increase the likelihood that children would feel comfortable disagreeing with the protagonist. In the second session, the protagonist was the researcher’s coworker who, as the researcher explained, was “sometimes serious and sometimes joking,” again providing students with an opportunity to disagree with the protagonist, if they deemed it necessary based on their causal reasoning. The choice of protagonists was informed by the extensive research that demonstrates that children take into account various informant characteristics when deciding whether or not to trust and accept their testimony (Harris, 2012). According to this research, children demonstrate selective trust in others’ testimony based on informants’ previous accuracy and group membership (Harris & Corriveau, 2011) but sometimes override testimony altogether to trust in their own perceptual judgments (Corriveau & Harris, 2010). By choosing a peer and an adult informant that was sometimes serious and sometimes joking, we sought to strike a balance between providing information from an apparently trustworthy source (the protagonist) and the possibility of disagreeing with this informant based on students’ own causal judgments.

All scenarios began with a possibility question: is it possible? For example, when presenting a scenario about a loudspeaker in the interview room in Session 1, the interviewer asked,

“I was here earlier this morning with a first grader at this school, and he told me that he can hear somebody in the office from that box over there [researcher points to loudspeaker]. Is that possible? Can we hear somebody from the office through that box?”

Once students accepted or rejected the possibility of A@AD in the scenario, the researcher followed up with open-ended questions to allow students to explain their reasoning. Scenarios and the A@AD features tested in each scenario are described below and summarized in Table 1.

[Insert Table 1 here.]

In Session 1 students were presented with a baseline scenario and two A@AD scenarios. In the baseline task, students were invited to play with an assortment of magnets and asked to react to instances of attraction and repulsion that occurred spontaneously as children played. Playing with magnets was a common activity in the kindergarten classroom; using them in this baseline activity allowed us to probe students’ reaction to a familiar phenomenon that involved physical action at a distance (i.e., magnets attracting and repelling at a distance) but where the cause and effect occurred within the same attentional space. In this case, the task was familiar and the cause and effect were both perceivable in the same space and at the same time. When the
researcher noticed that magnets were attracted or repelled at a distance, she asked the student, “What is happening with the magnets there?” to draw students’ explanation of action at a distance. After probing the students several times about instances of action at a distance in playing with the magnets, the researcher asked two further questions: “Can a magnet make another magnet do something without touching it?” and “Can one thing make another thing do something without touching it?” These questions were meant to investigate students’ possibility judgment about action at a distance in a concrete, tangible task (i.e., magnets) and as a hypothetical.

As described above, the first A@AD task in Session 1 involved asking students whether it was possible for someone in the school office downstairs to say something that could be heard through a loudspeaker located in the classroom where students were being interviewed on the second floor. The researcher pointed to the loudspeaker box in the room, and then described what the first grader had stated about somebody from the office speaking through that box. Although cause and effect occurred in different attentional frames, this was a phenomenon that was familiar to students based on our naturalistic observations. In the second A@AD task, the researcher manipulated a cat-shaped purse (see Figure 1a and 1b) to produce a meowing sound and asked students whether someone could be making the purse meow from blocks away. The researcher placed the cat purse on the interview table and held a sound box that made a meowing sound when pressed surreptitiously under the table. As specific moments in the interview, the researcher would click the sound box by pressing it against the bottom of the table and call the students’ attention to the sound, “Do you hear that? What does it sound like?” Then, the researcher would go on to explain the following:

“Remember that first grader I was telling you about? Well, he said that around this time, he would make my cat purse meow from his house that is a couple blocks away. Is that possible? Can he make my cat purse meow all the way from his house?”

The scenario was novel for students and involved an effect that was perceivable but a potential cause that was beyond their attentional space.

[Insert Figure 1a and 1b here.]

In Session 2, students were presented with two unfamiliar A@AD scenarios. First, students observed a video camera in the room inexplicably turning on and off and zooming in and out—in fact, the camera was being manipulated by a second researcher using a remote control that was out of students’ sight. This second researcher would call attention to the phenomenon,

“[Researcher 1], it looks like this camera just turned on.”

Students were asked whether someone could be operating the camera from far away. The researcher conducting the interview would turn to the student and explain,

“That’s really interesting because somebody that works with me said that she had to leave the school and go back to our office far away, but that she was going to be working this
camera from wherever she went. Sometimes she’s joking and sometimes she’s serious. Do you think she can do that?”

This scenario involved a perceivable effect and a suggested cause that was beyond their attentional space. In the second scenario in Session 2, students were shown a webpage on a tablet and told that the researcher’s coworker had said that they could see the live image of a beach in Florida on the tablet. Students were asked whether it was possible for them to view scenes on the screen from a camera recording in a beach all the way in Florida.

“My coworker told me that we can see a beach far away in Florida on this screen. Sometimes she’s joking and sometimes she’s serious. Do you think we can see a beach far away in Florida on this screen?”

Then, students were asked whether they believed they could control the camera in Florida by using the tablet on the table.

“My coworker also told me we can make the camera move on the beach in Florida from this screen here. Sometimes she’s joking and sometimes she’s serious. Do you think we can make the camera move far away in Florida?”

Lastly, they were given the opportunity to manipulate the tablet and observe how the beach scenes changed as they pressed on the navigation tools and asked whether they believed they could move the beach in Florida after manipulating the tablet. In this case, students were presented with a scenario where the suggested cause was local (i.e., the manipulating the tablet) and the potential effect was far away (i.e., a camera moving far away). In addition, students were asked to make a judgment before and after being allowed to intervene in the scenario. Intervening upon the camera offered temporal covariation information to students that helped us investigate whether temporal covariation evidence could override spatial gaps when students reasoned about the phenomenon as has been reported in prior research (Kushnir & Gopnik, 2007).

Some of the unfamiliar tasks involved a degree of experimenter manipulation to create the appearance of the A@AD phenomenon, not unlike other studies in developmental science (e.g., blicket detector used in studies of causal reasoning, e.g., Gopnik et al., 2004). The focus was not on whether children accurately described or discovered the actual causal structure involved but how they responded to the evidence presented to them and how this informed their reasoning about action at an attentional distance.

Procedures

Study sessions were conducted in a quiet resource room at the school. One researcher interviewed students and a second researcher took notes of student responses as well as helped with presentation of scenarios. The interviewer began each session with a brief play session using objects (e.g., finger puppets) to create rapport with students. Once students showed signs of feeling at ease with the researcher and the study context, the interviewer moved on to presenting students with the study scenarios. Once presented with a particular scenario, students
were first asked possibility questions ("Is it possible?") and then open-ended questions to elaborate their reasoning (e.g., “What do you think about that?” “What makes you say that?” “What do you think about that?” “Tell me more about what you’re thinking.”). Between scenarios, the interviewer continued playing with the child for a few minutes, until it seemed appropriate to introduce the next scenario. Scenarios within each session were counterbalanced between students. Sessions were 15-30 minutes long and were video and audio recorded for transcription and data analysis purposes.

Data Sources & Analysis

Data sources consisted of audiotapes, videotapes, and transcriptions of the study sessions. Initial emic, open coding was employed to identify themes in students’ responses (Charmaz, 2002; Strauss & Corbin, 1990). Two researchers independently watched session videos and documented insights regarding students’ responses to study scenarios. Memos were developed for individual students to document their reasoning across different tasks. Confirming and disconfirming evidence from students’ responses was incorporated into the narratives to illustrate students’ reasoning. As patterns emerged across memos, the researchers noted them in a list of recurring patterns (or categories) of responses. Emergent categories were discussed and elaborated, and discrepancies in interpretation of the data were resolved. These emergent findings were then developed into a coding scheme that was utilized for etic, top-down scoring of the data.

Codes were divided into four categories. Categories were not mutually exclusive categories; therefore, multiple codes could be applied to the same segment of interview transcripts. **Possibility judgment codes** referred to students’ responses to the possibility questions—that is, whether or not it was possible for the cause and effect to be separated by space in the scenario. They included “accepts” which indicated that the student accepted the A@AD presented in the scenario (i.e., that a cause and effect could be far away from each other) and “rejects” which indicated that students rejected the possibility. **Causal explanation codes** indicated whether students’ explanations of the scenarios reflected a local, distant, A@AD, or an ambiguous understanding of the phenomenon being presented.¹ We defined “local” as referring to responses that indicated students’ belief that both the cause and effect had to reside within attentional space; that is, where cause and effect were both perceptible to the student or protagonist in the scenario. Any responses that referred to “here” or “the room” or indicated that a causal relationship was not possible across a distance beyond the room were considered local.

“Distant” referred to responses where the cause the students identified was located outside the local space but around the school in locations that were accessible and likely familiar to students. For example, students might locate the cause down the hall, downstairs, or in the playground, and all these responses would be considered distant. A@AD responses indicated explanations where students referenced causes located blocks or miles away indicating that they were thinking outside the familiar space of the school. If students used the term “far away” or “a long way from here,” these were considered A@AD responses because they indicated students believed the cause was beyond the school. Finally, “ambiguous” referred to instances when students expressed a causal explanation of the scenarios but it was impossible to classify their explanation as either local, distant, or A@AD. This code was rarely used but it helped us identify instances

¹ In Grotzer & Solis (2015) we used the term “distal” to refer to student responses that were beyond the local
when students were thinking about the causality in the scenario in ways that did not directly answer our research questions.

Mechanism codes were the result of the emic analysis and referred to students’ tendency to use mechanism explanations to make sense of the scenarios. These codes aligned with previous research that has demonstrated that children refer to mechanisms in their causal reasoning (e.g., Keil, 1994; Sobel & Buchanan, 2009). We identified three types of mechanisms that students utilized in their responses: object knowledge, device mechanisms, and magical explanations. In “object knowledge” responses, students described their ideas about how the object in the scenario worked, regardless of whether they were technically or scientifically correct. Students might describe that wires took the sound from someone speaking in the office to the loudspeaker upstairs or that tablets work using the Internet to connect to computers around the world; they might also describe that a mouth inside the speaker box made the sound happen or that the creators of the tablet make the images move on the screen. All these responses would be considered object knowledge because they referred to an understanding students had about mechanisms involved in the objects presented in the study scenarios. “Device mechanisms” referred to instances when students described devices, real or imaginary, as they reasoned about the cause and effect relationship involved in the scenario. They might refer to remotes, microphones, cell phones, or buttons not mentioned in the original scenario that added mechanism information to help explain the A@AD phenomenon. “Magical explanations” was another way that students reasoned about causal mechanisms; they utilized fantastical or magical thinking in place of material explanations. Responses that referred to magicians or magical powers, ghosts, or invisible beings were all considered magical explanations. This code coincided with previous research that demonstrates that young children accept and retain magical explanations for anomalous events even after the mechanism of the phenomenon is explained to them (e.g., Subbotsky, 2004).

Cognitive strategy codes referred to reasoning strategies that students employed to think through scenarios. These codes included “perception and awareness,” in which students identified and described features of the scenarios that were important to figuring out the cause-effect relationship (e.g., noticing that certain icons on the tablet screen flashed when it was the user’s turn to control the webcam); “seeks evidence,” instances when students explored or described the kind of evidence that would provide clues as to the causal relationship involved in the scenario (e.g., touching or listening closely to the cat purse to figure out where the sound is coming from); “co-variation,” in which students described the relationship between an action or event and the consequences of that action or event in the scenario (e.g., noticing a relationship between a clicking sound and a voice coming out of the loudspeaker); “intervention,” in which students described a relationship between their own actions and the outcome being observed or presented in the scenario (e.g., noticing a relationship between their actions on the tablet screen and the movement of the images on the screen); “prior knowledge,” in which students reacted to the scenarios in a way that suggested they were familiar with what was being described and explained this prior knowledge or experience (e.g., describing how the buses are called out through the loudspeaker every afternoon); and “transfer,” in which students referenced details of an earlier scenario in trying to reason about or explain a new scenario that was presented to them.

A primary coder scored 100% of interview transcripts, deciding on instances to be
coded. A second coder scored 25% of all instances to establish inter-rater reliability. Reliability across transcripts ranged from 81% - 97% ($\kappa = .80 - .97$). Disagreements were discussed and resolved and the entire data set was revised to ensure that it reflected final agreements on decision rules and code descriptions.

Results

Students revealed the ability to both accept and explain A@AD but this was enabled by a number of factors. Although students certainly rejected A@AD and had trouble providing explanations in certain instances, their responses were variable and seemed to depend on features of the scenario as well as students’ own cognitive strategies for reasoning about the causality involved. Below, we characterize students’ responses to the different scenarios to illustrate how the familiarity of a phenomenon, possible mechanisms, and students’ own reasoning strategies affected their ability and inclination to accept and explain A@AD.

Students’ baseline beliefs had little relation to their reasoning about A@AD scenarios

Analyses of the baseline task did not show strong relationships between students’ responses to the baseline questions and their possibility judgments or explanations of A@AD in study scenarios. Two students responded “no” to both questions: they expressed that it was not possible for a magnet to affect another magnet at a distance and that more generally things could not affect other things without touching them. Nine students responded “yes” to both questions, indicating that they believed magnets and things could affect other magnets and things at a distance, respectively. Finally, 14 students expressed mixed responses, answering yes for one question but no for the other. As observed in Figure 2, students who responded no to both questions had the highest percentage of “accepts” responses ($M = 73\%$, $SD = .26$) in study scenarios, followed by students who said yes to both questions ($M = 58\%$, $SD = .20$), and finally those who had mixed responses ($M = 49\%$, $SD = .18$). The differences between the groups, however, were not large enough to suggest that the students who said no to the possibility of action at a distance in both baseline cases accepted A@AD in subsequent scenarios significantly more than students who answered yes or had mixed responses, $F(2,23) = 1.66$, $p = .21$. Furthermore, there did not appear to be meaningful differences between the percentages of local responses vs. distant and A@AD responses given by the three groups of students. The percentage of local causal explanations for students in the no ($M = 56\%$, $SD = .16$), yes ($M = 56\%$, $SD = .27$), and mixed ($M = 45\%$, $SD = .36$) was similar across the three groups and accounted for the majority of explanations; distant and A@AD were below 30% across the different groups.

[Insert Figure 2 here.]

This pattern of results suggested that whether or not students accepted physical action at a distance with magnets, in which the cause and effect are within the same attentional space, or accepted a hypothetical situation where things affect other things at a distance had little relation to how they responded to the specific A@AD scenarios presented in the study.
Students revealed the ability to accept and explain A@AD

When looking at the overall counts of instances coded, students accepted the possibility of A@AD in 53% of their possibility judgment responses, compared to 47% of instances when they rejected the possibility (see Table 2).

When looking at individual students, we similarly observed that students accepted ($M = 54\%, SD = .20; \text{Min} = 13\%, \text{Max} = 91\%$) slightly more than rejected ($M = 46\%, SD = .20; \text{Min} = 9\%, \text{Max} = 88\%$) A@AD. Figure 3 shows that 14 students accepted A@AD 50% or more of the time. For example, Kiara\(^2\) consistently accepted the A@AD propositions in the scenarios, including the meowing purse scenario.

I: Can the first grader make my cat purse meow from far away?\(^3\)
K: Yes.

Similarly, when Anthony was asked about someone’s ability to control a camera in the room where he was being interviewed from far away, he accepted the possibility.

I: What do you mean, she can see stuff far away?
A: Because...because, um, because, um, because she, she can see anything far away.
I: Oh, so she can see things that are really far away?
A: Uh-huh.

When asked to explain their reasoning, 22 students out of the total sample provided explanations ($M = 6.95, SD = 1.00; \text{Min} = 2, \text{Max} = 21$). Students’ responses demonstrated that although many students provided local explanations, many were also able to provide responses that involved distances between causes and effects. Across these 22 students who provided explanations, 55% of students’ explanations involved local reasoning, compared to 19% of students’ responses that referred to distant explanations, and 19% that referred to A@AD. When looking at individual students, we observed that students provided more local explanations ($M = 57\%, SD = .29; \text{Min} = 0\%, \text{Max} = 100\%$) than distant ($M = 18\%, SD = .19; \text{Min} = 0\%, \text{Max} = 57\%$) or A@AD explanations ($M = 26\%, SD = .30$). As shown in Figure 4, 13 students provided local explanations 50% of the time or more.

For example, when asked whether someone could control a camera in the room from far away, Aisha responded, “She can only come here and do it,” indicating that the protagonist could only do so by being in the room to control it. Similarly, when asked about using a tablet to control a camera in Florida, both Shantell and Cornell expressed local reasoning by explaining that the

\(^2\) Pseudonyms are used throughout.
\(^3\) In excerpts, “I” refers to interviewer and the other initial refers to the first letter in students’ names.
only way one could control a camera in Florida was by traveling to Florida to control the camera.

S: I’m thinking that when the camera’s in Florida and we’re still [at the school] and Florida is, and Florida is really far away we must get an airplane so we can move the camera.
I: We need an airplane to move the camera? Like the airplane can move the camera? Or we have to get on the airplane and go to Florida to move the camera?
S: We have to get on the plane to move the umm camera.

C: That Florida is a far, far away place so you have to get, go to a plane to see it.

On the other hand, students were also able to explain scenarios in ways that demonstrated their A@AD reasoning. Figure 4 shows that 12 students provided 50% or more responses that involved distance between cause and effect that went beyond their immediate attentional space. Samuel, for example, was able to utilize his knowledge of the Internet to explain how someone could use a tablet to control a camera in Florida.

S: The camera, you got type of camera that you, you could type camera of Florida and then it will have, and then you could, and then you could look in a camera in Florida. You could look in a camera in Florida!
I: Okay. When you say we can type, you can type that, what do you mean by that? What do you mean by type?
S: You could type, um, you could type uh…
I: Like where are you typing that?
S: A camera just in Florida.
I: Uuhh
S: And could check out a camera so it’s true.
I: Okay. So I’m still wondering what you mean by type. Like where are you typing that?
S: Typing that?
I: Yeah?
S: Into the…
I: Oh, into the…Oh!! Into the [search] bar?
S: Yeah.
I: Okay. So you’re telling me that you can search for it on the bar, you just type up camera in Florida and you can find it on a website like this?
S: Yeah

Importantly, students’ possibility judgments were not always consistent with their causal explanations. By comparing Figures 3 and 4, we can see that students who rejected the possibility of A@AD at times provided A@AD explanations and that students who accepted the possibility of A@AD at times rejected A@AD. For example, Shona rejected A@AD in 67% of possibility judgment instances but provided A@AD responses in 57% of her causal explanations. Conversely, Aniyah accepted A@AD in 73% of instances but all her causal explanations were local. This is perhaps not surprising, given that articulating explanations can be more cognitively demanding for children than simply accepting or rejecting a causal scenario presented by an
interviewer. Thus, young students’ possibility judgments may not be closely coupled with their causal explanations. Figure 4 also shows that four students (i.e., Aniyah, Cornell, Marcus, and Shantell) provided 100% local responses, and two students (i.e., Marisha and Zamira) provided 100% A@AD responses. These students tended to give few explanations (1-3), which likely limited the variability in their responses. It is noteworthy, however, that for students whose responses were 100% local, they all had at least one local response in the meowing purse scenario and two of the students had responses in the tablet scenario. As discussed below, there appeared to be a relationship between the scenario and its causal features and the kinds of responses it elicited.

Students accepted and explained distance between causes and effects in familiar scenarios

Analyzing student responses by scenario revealed clear patterns in the types of explanations that emerged. Figure 5 shows that student responses were mostly distant in the loudspeaker scenario; local in the meowing purse and camera scenario; and A@AD in the tablet scenario.

[Insert Figure 5 here.]

The loudspeaker scenario gave us an opportunity to observe how students responded to an event that occurred often in their context and was likely familiar to them. Most students were familiar with a voice coming out of the loudspeaker and had no problem accepting that a person in the office (or another building, as some of them suggested) could say something that would come out of the speaker. Twenty-one out of 25 students accepted the possibility of this event and provided detailed explanations of this familiar event. In fact, many of them used their personal experience and referred to the school secretary or principal making announcements through the loudspeaker, such as announcing the arrival of buses. Josiah explained,

J: When it’s the end of the day they, they call buses and then they say, “Please have all the students have their coats on for dismissal. Thank you.”

Zamira matter-of-factly stated,

Z: It calls the buses so we can go home.
I: Oh, it calls the buses? Did you hear it before?
Z: I heard it everyday.

And Samuel gave a detailed account of the phenomenon he was being asked to explain.

S: Ms. G!
I: Tell me more.
S: Ms. G can speak up there and she has a, this, the principal she puts on music so we could dance and it comes out of that thingy.
I: And where’s Ms. G?
S: Ms. G? She’s in the, in the, she’s in the office and she could make it all the way up there. You see that door where it comes out?
I: Uhuh, I did see that door.
S: Well we come in and it, and in the front of the thing we could, she, you see Ms. G with the glasses right?
I: Yeah, yeah.
S: That her! And she’s, and there’s this microphone that she speak out, out so it could come through that thing.
I: Oh it comes through that box?
S: Yeah, that thingy thing.

Samuel not only accepted that this was possible but identified the cause as coming from the office downstairs and described the mechanism he had observed as work (“this microphone that she speak out so it could come through that thing”). This was not unlike the responses of other students who described their prior experiences with this phenomenon in detail and clearly placed the cause and effect at a distance but within the school space.

In this scenario, students had no problem accepting and describing a cause and effect being separated in space when the cause and effect were within their attentional and experiential repertoire. They had prior knowledge and direct evidence not only of the perceived effect but also of the potential cause. The cause that was identified in the scenario (someone speaking through the PA system in the office) occurred at a distance but not outside students’ experience, which provided sufficient information for them to accept the possibility of action at a distance and explain the reasoning behind their causal judgment. Results from unfamiliar scenarios where students had little or no prior experience or direct perceptual access demonstrated that students had a harder time accepting A@AD and explaining novel A@AD phenomena.

Students rejected distance between causes and effects in unfamiliar scenarios

Unfamiliar scenarios presented an effect and a possible cause that was far beyond students’ direct perception or day-to-day experience. Although some of the scenarios involved technology that can be native to many young children, the potential mechanisms were obscure enough to allow us to assess students’ reactions to novel scenarios. For example, the meowing purse scenario was surprising for students and many seemed incredulous about the prospect of someone making a purse “meow” from a distance. Fourteen students initially rejected the possibility of someone making the purse meow from far away. Lawrence made sure he understood the scenario by asking a clarifying question and then clearly stated that he did not believe it was possible for someone to make the purse meow from far away.

L: He was in the [school] before?
I: No! He was in another school! And he told me that right around this time, he was going to make my cat purse meow!
L: I don’t think that’s true.

Even when they accepted the possibility, when pushed to explain the meowing purse phenomenon, the students considered various possibilities but struggled to come up with A@AD explanations; instead, they reasoned in ways that brought the cause closer to the effect or at least made the possible mechanism more familiar. They looked for a local mechanism in the purse.
(e.g., “I think it’s something inside your bag.”) or looked for potential causes at a distance but within their attentional repertoire (e.g., the classroom next door or somewhere right outside the school). For example, Aisha did not believe that a first grader could make the purse meow from far away “because that would be crazy.” She believed that someone had brought a cat to school, providing a cause that was within the school context, which was a familiar environment to her, even though she had never really seen a cat at school before. Jada believed the cause of the meowing sound was inside the purse and explored it, looking for the mechanism that was making the sound. When he did not find the connection between a potential cause and the sound, he declared that something was “wrong with it.”

J: I thinks going on is [unzips the purse and is looking inside it again]… not meowing anymore…something’s wrong with it. [Student J zips up the purse.]

Similarly, when asked whether someone far away could operate a camera in the room, 18 students were surprised and rejected the possibility initially. For example, Shantell explained, “When she goes everywhere and the camera is at [the school], she can’t work it in for everywhere where she goes.” Kendrick, also rejected the idea, “I think she was joking. ‘Cause she can’t work the camera when she’s all the way somewhere far, she just had to come there, that’s all.”

Students responded to the tablet scenario in a similar way to how they reacted in the meowing purse and camera scenarios. Initially they were skeptical and 11 students did not believe they could see images through a camera in Florida with a tablet or operate a webcam from far away using a tablet. Interestingly, while initially only 6 students believed that they could indeed see a camera in Florida, it would be possible for them to control it using the tablet. Nayshya explained that she did not believe she could control a camera in Florida “because you’re far away from Florida, and Florida is far away from us.”

Despite students’ skeptical responses to unfamiliar scenarios, some students accepted and elaborated A@AD explanations either when initially presented with the information or after exploring the scenario further. After initially rejecting the notion of the meowing sound being controlled from far away and providing local alternative explanations, Nayshya suggested a mechanism that would explain a causal relationship at a distance.

N: Oh I know!

I: What?

N: If he lives far far away maybe he has a key that makes your purse say that.

E: Uh-huh. What kind of key?

N: Um, a magic key. That you can’t see.

E: Oh really? So if he has a magic key, he can make my cat purse meow?

N: Yeah!

Similarly, although Ayana initially rejected the notion that she could be controlling a webcam in Florida, after seeing the evidence from her own manipulation of the tablet, she had no doubt it was possible.
A: If we're controlling the camera around whole place, that means we can see everything that, that... [mumbles] controlling the camera.

I: What makes you think we're controlling the camera? Can you tell me more about that?

A: That we're pushing this to see everything. [A is holding the tablet.]

Students’ ability to intervene in the tablet scenario informed students’ reasoning toward A@AD and this is discussed further below.

Students referred to mechanisms in their reasoning

Students’ responses demonstrated both their initial ideas as well as their careful thinking through the information and evidence that was presented to them. They considered multiple potential explanations, and as they did, they expressed ideas about mechanisms. Prior experience or knowledge of different mechanisms had powerful explanatory power, and at times, it was exactly this mechanism knowledge that allowed students to construct a causal explanation that involved A@AD. Students’ use of mechanism knowledge involved either devices familiar to them that were not presented as part of the scenario, their knowledge about the objects presented to them in the scenario, or fanciful or magical explanations. Importantly, the mechanisms students described were not necessarily technically or scientifically accurate but they demonstrated their attention to how the cause and effect relationship could function in the scenario.

Device Mechanisms. In 54% of instances, students introduced ideas about mechanisms involved in devices not mentioned in the scenario. By incorporating knowledge about devices, students were able to expand the possible explanations for the A@AD scenarios. When responding to the meowing purse scenario, Anthony described a device (“a thing…painted…and has little scraped holes”) that could produce the sound from the wall. Although in this example it is not clear that Anthony’s explanation involves A@AD, he is able to imagine a device to formulate an explanation for the meowing sound.

A: When you can't see something and you can hear something, it's just a thing where, where you cannot see, and it's painted, and has little scraped holes, like I said you can't see it, and it can hear far away.

I: Can you tell me more about this thing that can hear far away?

A: Hm. Hum. That it, it's [picks up the cat purse, turns in upside down, explores the outside of it] controlling all the way to here [at “here” A points up to the same spot on the wall].

Some students discussed a remote control mechanism. Aisha considered the possibility that the camera in the room could be operated from far away using “a remote controller,” although later she concluded that controlling a camera from far away was not possible, even with a remote control. Zamira had a similar explanation,

I: So do you think my friend is doing that?

Z: Yes.

I: Yeah?
Z: I guess she has a remote that’s doing that?
I: Tell me more about that. A remote? What do you mean?
Z: Like when she has a remote and she’s all the way to, to another street and she has this remote and she’s doing something to like a, a camera.

Other students mentioned keys, buttons, microphones, and radios, as illustrated in some of the excerpts above. Some of these devices made sense within the premise of the scenarios and others did not; however, in either case, these devices allowed students to expand the repertoire of potential mechanisms that would help explain the A@AD phenomena.

Object Knowledge. In 30% of the instances when students discussed mechanisms, they referred to knowledge they had about the objects involved in the scenarios. Whether reasoning about the loudspeaker, cat purse, camera, or tablet, children used any prior knowledge they had about how these objects worked to come up with an explanation of the phenomenon. For example, Niles described his ideas about the mechanism involved in the sound coming from the loudspeaker.

N: Uh. That’s called a speaker.
I: Huh. What does it do?
N: Uh. When you press the button that says, that says press to call it, it says, it says something.

Lawrence accepted the possibility of A@AD in the table scenario and described what he knew about how the webcam application worked.

I: Do you think that it’s really you moving it? Moving the camera? Or not?
L: Mmm…It’s me really moving the camera.
I: And what makes you think that?
L: Because all you have to do is put these little blue things somewhere, and then it will go somewhere else.

As illustrated by these two excerpts, some students had prior knowledge of the objects in the scenarios—Niles had seen the PA system operated at the school—but other derived information about the objects as they interacted with them throughout the interview—Lawrence gleaned information about how the webcam worked after using the tablet.

Magical Explanations. Interestingly, some students used magic or other fantastical explanations as potential mechanisms to explain unfamiliar scenarios. In 14% of instances, children referred to magic (and sometimes specifically a wand) or other supernatural mechanisms like ghosts to explain the novel scenarios. When asked about the meowing purse, Lawrence answered,

L: Um, I’m not sure ‘cause only a magician could do that.
I: Oh a magician. So tell me about that. About a magician doing it.
L: A magician is people who is so magic…but some magicians don’t have a wand, they just use their hands as one.
Kendrick also suggested that a wand could make the cat purse meow from far away.

K: I think he has a wand to make that.
I: He what?
K: I think he has a wizard wand
I: A wizard wand?
K: Yeah. To make that.

When explaining the camera that turned on and off, Raven suggested that, “It’s haunted up here” and that, “There’s ghosts…Ghostes are under the table. Probably they’re in the closet.” She even suggested an invisible person near the camera was turning it on.

Often when students were engaged in thinking about explanations for the scenario and considering the possibility of A@AD they offered ideas about potential mechanisms. Whether students provided specific ideas of devices that could achieve A@AD, mentioned their past experience with mechanism, or invoked magic as an explanation, these efforts provided a glimpse into the wealth of cognitive strategies that students employed in reasoning about familiar and unfamiliar instances of causality.

Students employed various cognitive strategies to reason about scenarios

Responses to unfamiliar scenarios demonstrated students’ difficulty accepting and explaining causal phenomena where the cause and its effect are not both perceptible in the same attentional space. However, students actively reasoned about the phenomena in these scenarios. As interviews progressed and as students continued to explore the scenarios, students proposed various hypotheses and explored their plausibility as they tried to explain the phenomenon they were observing. In doing this, they seemed to be trying to connect the repertoire of causes and mechanisms they were familiar with to the effects that they were being asked to explain. In order to do this, students intuitively employed a number of cognitive strategies.

In previous sections, we have discussed students’ use of prior knowledge to inform their reasoning about scenarios. In other instances, students transferred their understanding from one scenario to another, which seemed to inform their thinking about A@AD. Josiah, for example, noted,

J: The tablet and the camera’s kinda like the same because you can see some - cause on the tablet you can see something far away and, and on the, the camera can see something far away.

Four cognitive strategies seemed particularly prominent across students and scenarios or appeared most relevant to understanding students’ reasoning about action at an attentional distance: seeking additional evidence; perception/awareness of important causal features in the scenario; noticing co-variation between causes and effects in scenarios; exploring the relationship between their interventions and outcomes. Here we discuss these four reasoning strategies in detail, but frequencies for all codes in this category are included in Table 2.
Seeking Evidence. Students carefully observed the demonstrations in scenarios and when these demonstrations did not provide sufficient to point to critical variables, and in 34% of instances, students sought their own evidence. They often looked around them (standing up and looking around, going to the window to see if there was anything going on outside, listening to the classroom next door), looking for clues and evidence that would help them explain the phenomena. Although in some instances students’ exploration of the available data confirmed local judgments, in other cases their observations and the evidence they produced by their own interventions supported their reasoning about action at an attentional distance.

In the meowing purse scenario, several students had a notion that the mechanism producing the sound was inside the purse. They examined the purse carefully and provided local explanations to accompany this exploration. Anthony explored the purse and thought that maybe “wiggling” it was what made the sound happen.

A: Yeah. Maybe it's coming from here [A touches the front of the purse]. Or maybe here [A touches the back of the purse]. Oh. It just makes a noise ...Is it a little kindergardens?
K: Hm?
A: Oh I see why it's making the noise, ‘cause if we wiggle it [A picks up the purse and shakes it, then puts it down], so much, it's gonna come.

Jada had a similar reaction to the meowing purse scenario and also looked in the bag for the cause.

I: Where do you think it’s coming from?
J: Right here.
I: Ohhh. You mean, like, right at the very bottom? [Student J opens up the purse to I and shows her the very bottom, rear corner of the bag.]
J: When it meows, I’m going to hear it. [She holds the cat purse to her ear to demonstrate.]

In the camera scenario, Anthony showed an interest in testing whether his actions had any effect on the movements of the camera in front of him.

A: Maybe if we do this [A waves his hand up and down in front of the camera. He does this for a little while, testing] to that hole, it maybe do something.
I: It can - like what kind of thing?
A: Like it can make it go closer again.
I: Oh, it can zoom in?
A: Uh-huh.
I: So if we move our hands, then maybe it can zoom in?
A: Uh-huh.

Perception/Awareness. In 20% of the cognitive strategies coded, students demonstrated they were perceptive and aware of scenario details that could serve as clues to the causality involved. These scenario details or features referred to information inherent in the scenario that could provide students insights into the causal structure. For example, students noticed the
meowing sound and connected it to the cat purse sitting on the table. They identified the speaker box on the wall and understood the idea that a voice came through there. Even when unprompted, they noticed when a camera zoomed in and out or video images on the tablet moved. They realized that the different icons on the tablet screen helped to manipulate the webpage. Describing these features was not in itself a causal explanation, but their awareness of these important features worked as an entry point for students to develop alternative hypotheses about what was going on in scenarios. Cameron paid close attention to the evidence in the tablet scenario, which later helped him to develop an AI@AD explanation of why it was possible for him to control a camera all the way in Florida using the camera.

C: Um like, here we like, here we like changing the color, from right there and, and you turn in into, now it’s yellow…
R: Uuhh
C: …and that is like, the first time, we didn’t see the color…
R: Mmhm
C: …but now, now you clicked on it and it, it’s like green.

Cameron seemed to be picking up on the relationship between tapping the rectangle, which is how individuals indicate that they want to control the camera, and the color of the rectangle changing, which is what happens individuals we gain/lose control of the camera. As he gained a better understanding of the different factors, he also seemed to create a more complex understanding of the causal structure.

In this same scenario, Zamira and Anthony also picked up on salient features of the causal relationship and verbalized these features when describing their thinking.

Z: It’s going to umm, other places. [Z continues touching tablet screen]
I: So umm, so what’s going to other places?
Z: When we press, um this, it goes to um, it goes to this”

A: They're changing places.
I: What do you mean, changing places?
A: They're, they're moving the camera to another, to another, um, street or place.

As students noted important features of scenarios, they formulated ideas about the causal structure and began to explore possible explanations for the cause-effect relationship involved. As discussed next, sometimes this involved proposing or seeking possible evidence to confirm or disconfirm their causal hypotheses.

Covariation. In 7% of instances students noticed a more general relationship or covariation between potential causes and effects in scenarios, either by using their previous knowledge of the objects or by closely observing the scenarios. Noticing the cause-effect covariation demonstrated their awareness of important details of the scenarios that sometimes resulted from students’ seeking evidence in the scenarios. For example, Aniyah realized that when working on the tablet, “you have to press the box and then it will move.” In an example
described previously Niles was able to use his prior knowledge of the speaker mechanism to describe how he could hear a loudspeaker announcement in his classroom. His explanation also included information about covariation, “When you press the button that says, that says press to call it, it says something.” In the tablet scenario Lawrence was able include information about covariation in his description of how the tablet was able to control the camera in Florida, “Because all you have to do is put these little blue things somewhere, and then it will go somewhere else.”

In the examples described, students were noticing and describing the relationship between potential events or interventions and their corresponding effects, which helped them think through the scenarios. Similar to their awareness of important features or seeking evidence, and as illustrated by Niles’ and Lawrence’s examples, generating ideas about covariation at times helped them move from a local to distant or AD understanding of the scenarios.

Intervention. Anthony’s reaction to the camera scenario, above, illustrates not only students’ tendency to seek evidence or pay attention to covariation but also some students’ attention to the effect of their interventions. In certain instances, students sought evidence by intervening in the scenario. They looked for the effects of their actions and used this information to draw conclusions about the causality involved in the scenario. Although students used interventions to test causal hypotheses in only 13% of instances, this strategy illustrates students’ efforts to seek additional evidence to determine the causality in scenarios and it aligns with existing literature on children’s reasoning from their own causal interventions (e.g., Schulz, Gopnik, & Glymour, 2007; Sobel & Sommerville, 2010). Intervention enabled children to witness the temporal covariation of their actions and the movements on the tablet screen, and utilize this information in considering the spatial gap being presented to them in the scenario. As with other categories, sometimes the interventions students employed tested local hypotheses. For example, when asked about a camera being operated from far away, Nakida suggested that her actions were actually manipulating the zooming in and out of the camera in the room.

N: It’s weird because when I do this it goes up and when I go back it goes back.
I: Oh, so you think when you move then the camera zooms in and out?
N: Kind of big. When it gets farther it does that and when it goes back…[Leaning back and forward in her chair.]
I: Huh. So you think you can make the camera do that when you move?
N: Yep
I: That’s really cool. But you don’t think that the lady can do it from far away?
N: No

In this case, Nakida accepted the possibility of a cause (i.e., her movements) and an effect (i.e., the camera’s zooming) operating at a distance but within the local space that she could perceive and attend to; she rejected the possibility that this could happen beyond her attentional space.

In other cases, it was the evidence from their interventions that allowed students to reason about AD. When students witnessed that their actions on the tablet corresponded with images moving on the screen, they concluded that it was possible to operate the camera in Florida from far away. Figure 6 shows that all local responses in this scenario were provided
before students manipulated the tablet and that although some students provided A@AD responses before intervention, most A@AD responses were provided after an intervention.

[Insert Figure 6 here.]

Nayshya was initially ambivalent about whether or not it was possible to operate a camera in Florida using the tablet, but as soon as she saw the results of her intervention on the tablet screen, she expressed “We are moving the camera.” Similarly, Cameron changed his conclusion after manipulating the tablet.

I: So what do you think? Do you think you’re moving the camera?
C: Yeah
I: Can you tell me more about that? What makes you say that?
C: Because I am moving it on the black thing. [Referring to the black rectangle space where camera on the tablet screen is controlled.]
I: You’re moving it on the black thing. Okay. Tell me more about that. What are you doing to the black thing to make it move? To make the camera move?
C: I’m moving it different places.
I: What are you doing to make that happen?
C: I’m, I’m pressing it, with the, how is that happening?
I: What are you pressing buddy?
C: I, I’m pressing there where on the black where I wanted the yellow thing to go.

Seeing the evidence of their own intervention allowed students to conclude that A@AD was a possible explanation for the phenomenon being observed. The evidence of temporal covariation allowed them to override spatial discontinuity to accept and describe a causal relationship between their actions and the movement of a camera far away. This fits with findings suggesting that temporal covariation plays an important role in causal reasoning and that even preschoolers can override spatial gaps to reason from temporal information.

Discussion

The results demonstrated children could accept that causes and effects may act at a distance. However, we were interested in further exploring the features of events that students accept as A@AD and characterizing the nature of their reasoning when responding to scenarios. In general, students seemed to accept and describe action at an attentional distance if they were familiar with the scenario; could think of familiar causes or mechanisms within their attentional repertoire; or observed evidence that helped them think about possible mechanisms that connected causes and effects at an attentional distance. When they could not think about potential familiar mechanisms or did not see evidence that supported the claim of A@AD, students often rejected the possibility and provided local explanations or were unable to expand on their acceptance of A@AD as a possible explanation.

The question may not be as simple as whether or not young students can reason about action at an attentional distance but rather in which instances they are likely to notice, attend to, and understand complex causal phenomena, such as A@AD. While at first glance, a purse that
meows may invoke notions of magic, many accepted scientific concepts involving action at an attentional distance can also seem fantastical: tides on the Earth are controlled by the moon, satellites stay in orbit as the result of a balance between gravitational force and their forward motion, and distant weather events can impact local watersheds. What was evident in the way children reasoned about AD@ in this study were the multiple cognitive strategies and modes of causal induction they employed to make sense of scenarios. These same cognitive strategies (e.g., recalling previous knowledge, reasoning about potential mechanisms, seeking evidence, or intervening in scenarios) can be used in instructional practice to teach young children about complex scientific phenomena involving AD@. Learning that causality can act across great distances is an important understanding in our complex world. This study contributes to our knowledge of how young learners reason about such concepts and is an early step in figuring out the best ways to support their developing understanding.

Acknowledgments

The authors wish to thank Reuben Posner for his assistance collecting and analyzing these data. We also wish to thank Maureen Danahy for enabling us to work in her class.

This work is supported by the National Science Foundations, Grant No. NSF#0845632 to Tina Grotzer. All opinions, findings, conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

Summary of tasks in Session 1 and Session 2

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario Description</td>
<td>Scenario Description</td>
</tr>
<tr>
<td>Baseline: Student plays with magnets and is asked about the attraction and repulsion that occurs spontaneously between magnets as they play.</td>
<td>1) Student is told that the researcher’s coworker said that she could control a camera in the room from far away.</td>
</tr>
<tr>
<td>1) Student is told a first grader said that the voice coming through the loudspeaker in the classroom was coming from the office downstairs.</td>
<td>2) Student is told that the researcher’s coworker said that they could see and control a camera in Florida using a tablet.</td>
</tr>
<tr>
<td>2) Student is told that a first grader in a school a few miles away said that s/he could make the researcher’s cat purse “meow.”</td>
<td></td>
</tr>
<tr>
<td>A@AD Features</td>
<td>A@AD Features</td>
</tr>
<tr>
<td>Action at a distance, but both cause and effect are familiar and within the same attentional space.</td>
<td>Action at an attentional distance with effect within attentional space and cause outside attentional space; unfamiliar context.</td>
</tr>
<tr>
<td>Action in two different attentional frames, at an attentional distance, but both of which are familiar to the students and within their awareness.</td>
<td>Action at an attentional distance with cause within attentional space and effect outside attentional space; unfamiliar context.</td>
</tr>
</tbody>
</table>
Figure 1a and 1b

Cat-shaped purse used for the meowing purse scenario
Figure 2

Percentage out of total number of responses given in each response type (Accepts, Rejects, Local, Distant, A@AD) by the three groups of students who responded to the baseline task (no to both, yes to both, or mixed)

Students with mixed response to magnet questions, n=14 Yes to both magnet questions, n=9 No to both magnet questions, n=2
Table 2

Frequencies (percentages) of student responses organized by Possibility Judgment, Causal Explanation, Mechanism, and Cognitive Strategies categories across Sessions 1 and 2

<table>
<thead>
<tr>
<th>Code Categories</th>
<th>Session 1 (n=328)</th>
<th>Session 2 (n=437)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possibility Judgment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accepts</td>
<td>73 (60.83%)</td>
<td>110 (49.11%)</td>
<td>183 (53.2%)</td>
</tr>
<tr>
<td>Rejects</td>
<td>47 (39.17%)</td>
<td>114 (50.89%)</td>
<td>161 (46.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>120 (100%)</td>
<td>224 (100%)</td>
<td>344 (100%)</td>
</tr>
<tr>
<td>Causal Explanation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>55 (59.14%)</td>
<td>36 (50.70%)</td>
<td>91 (55.49%)</td>
</tr>
<tr>
<td>Distant</td>
<td>27 (29.03%)</td>
<td>4 (5.63%)</td>
<td>31 (18.9%)</td>
</tr>
<tr>
<td>A@AD</td>
<td>5 (5.38%)</td>
<td>26 (36.62%)</td>
<td>31 (18.9%)</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>6 (6.45%)</td>
<td>5 (7.04%)</td>
<td>11 (6.71%)</td>
</tr>
<tr>
<td>Total</td>
<td>93 (100%)</td>
<td>71 (100%)</td>
<td>164 (100%)</td>
</tr>
<tr>
<td>Mechanism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device Mechanisms</td>
<td>20 (66.67%)</td>
<td>24 (50.00%)</td>
<td>44 (56.41%)</td>
</tr>
<tr>
<td>Object Knowledge</td>
<td>6 (20%)</td>
<td>17 (35.42%)</td>
<td>23 (29.49%)</td>
</tr>
<tr>
<td>Magical Explanations</td>
<td>4 (13.33%)</td>
<td>7 (14.58%)</td>
<td>11 (14.10%)</td>
</tr>
<tr>
<td>Total</td>
<td>30 (100%)</td>
<td>48 (100%)</td>
<td>78 (100%)</td>
</tr>
<tr>
<td>Cognitive Strategies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeks Evidence</td>
<td>40 (47.06%)</td>
<td>21 (22.34%)</td>
<td>61 (34.08%)</td>
</tr>
<tr>
<td>Prior Knowledge</td>
<td>32 (37.65%)</td>
<td>7 (7.45%)</td>
<td>39 (21.79%)</td>
</tr>
<tr>
<td>Perception/Awareness</td>
<td>3 (3.53%)</td>
<td>32 (34.04%)</td>
<td>35 (19.55%)</td>
</tr>
<tr>
<td>Intervention</td>
<td>8 (9.41%)</td>
<td>15 (15.96%)</td>
<td>23 (12.85%)</td>
</tr>
<tr>
<td>Covariation</td>
<td>2 (2.35%)</td>
<td>10 (10.64%)</td>
<td>12 (6.70%)</td>
</tr>
<tr>
<td>Transfer</td>
<td>0 (0.00%)</td>
<td>9 (9.57%)</td>
<td>9 (5.03%)</td>
</tr>
<tr>
<td>Total</td>
<td>85 (100%)</td>
<td>94 (100%)</td>
<td>179 (100%)</td>
</tr>
</tbody>
</table>
Figure 3

Percentage of Accepts and Rejects responses given by individual students
Figure 4

Percentage of Local, Distant, and A@AD responses given by individual students
Figure 5

Percentage of Local, Distant, and A@AD responses given in each scenario
Figure 6

Percentage of Local and A@AD responses given before and after intervention in the tablet scenario